Google Analytics Alternative

You are browsing the archive for Arctic.

Lapland’s mystery moths puzzle science

April 22, 2014 in Adaptation, Arctic, Temperature Increase, Uncategorized, Uncertainty, Warming, Wildlife

FOR IMMEDIATE RELEASE

A 2°C rise in average temperatures in 30 years seems not to have bothered Lapland's moths Image: By Ximonic, Simo Räsänen via Wikimedia Commons

A 2°C rise in average temperatures in 30 years seems not to have bothered Lapland’s moths
Image: By Ximonic, Simo Räsänen via Wikimedia Commons

By Tim Radford

Arctic moths which continue to thrive despite rising temperatures are challenging science to explain why they seem impervious to climate change.

LONDON, 22 April – Finnish and US scientists have an unsolved puzzle: good news when they expected bad news. They have invested 32 years studying the forest moths of Finnish Lapland to measure the effect of climate change – and there doesn’t seem on the face of it to have been a change. Yet between 1978 and 2009, average annual temperatures in the region rose by 2°C and precipitation was higher.

“You see it getting warmer, you see it getting wetter and you see that the moth populations are either staying the same or going up,” said Mark Hunter of the University of Michigan. “So you might think ‘Great. The moths like this warmer, wetter climate.’ But that is not what is happening.”

The study looked at population records for 80 species of moth, and found that 90% of them were stable or increasing through the three decades. But warmer temperatures and wetter seasons are more likely to reduce the rate of population growth: species tend to do best under the conditions to which they have adapted over thousands of years.

“So the only possibility is that something else other than climate change – some other factor that we did not measure – is buffering the moths from substantial population reductions and masking the negative effects of climate change,” Professor Hunter said.

He and his colleagues report in Global Change Biology that they used nocturnal light traps to catch 388,779 moths from 456 species at the Värriö Strict Nature Reserve inside the Arctic Circle, 100 kilometres from a road and about 6 km from the Russian frontier. They selected the data for the 80 most common species for statistical analysis.

Winners and losers

At such high latitudes, any change in climate means a change in vegetation and an altered ecosystem, which should affect insect numbers. So the logic suggests that some unknown forces are at work, to protect the moth numbers just when they should be going down.

Ecologists don’t like unexplained outcomes. Because insects are the most numerous animals on earth, because they are pests, pollinators, food sources and disease bearers, and because their numbers ought to be indicators of both annual and long-term climate change, ecologists like to know what happens to them, and when, and why.

Researchers in Europe and the US have repeatedly tested animal population responses to climate change to identify winners and losers and understand what makes one species a loser, another a winner.

A 20-year study by Ben Hatchwell and colleagues at the University of Sheffield in the UK has found that warm dry spring weather makes all the difference to long-tailed tits: these short-lived passerines stand a much better chance of rearing chicks and then surviving to the next year, and the next chance to breed. A cold wet autumn normally increases mortality, but a preceding warm dry spring can offset this effect, they report in the journal Oikos.

Wide implications

So the British ornithologists have an explanation for one bird’s good performance. The Finnish entomologists would like to know what helps keep the larvae alive and the moths aflutter in the warming, changing Arctic Circle. The question is important not just for one group of high-latitude moths: scientists could be misreading the effects of climate change across a whole suite of species because these effects might be masked by other, unidentified factors.

And it becomes increasingly important with a prediction, from the Bjerknes Centre for Climate Research in Norway, that northern Europe could warm by 3°C in the winter by mid-century, with increasing rainfall.

Stefan Sobolowski and Robert Vaulard of the Pierre-Simon Laplace Institute in France report in Environmental Research Letters that even if global average warming is kept to 2°C there will be “substantial and robust changes” across Europe. Against such a backdrop, it becomes important to know why one group of animals is doing better than expected – for the moment.

“The big unknown is how long this buffering will last,” said Professor Hunter. “Will it keep going indefinitely, or will the negative effects of climate change eventually just override these buffers, causing the moth populations to collapse?” – Climate News Network

Greenland’s icecap loses stability

April 13, 2014 in Arctic, Glaciers, Greenland, Ice Loss, Sea level rise, Warming

FOR IMMEDIATE RELEASE

The calving front of the Jakobshaven Glacier in western Greenland in April 2012 Image: NASA ICE via Wikimedia Commons

The calving front of the Jakobshaven Glacier in western Greenland in April 2012
Image: NASA ICE via Wikimedia Commons

By Tim Radford

Greenland is losing ice from part of its territory at an accelerating rate, suggesting that the edges of the entire ice cap may be unstable.

LONDON, 13 April – Greenland – the largest terrestrial mass of ice in the northern hemisphere – may be melting a little faster than anyone had guessed.

A region of the Greenland ice sheet that had been thought to be stable is undergoing what glaciologists call “dynamic thinning”. That is because the meltwater from the ice sheet is getting into the sea, according to a study in Nature Climate Change.

In short, Greenland’s contribution to sea level rise has been under-estimated, and oceanographers may need to think again about their projections.

Shfaqat Khan from the Technical University of Denmark and colleagues used more than 30 years of surface elevation measurements of the entire ice sheet to discover that overall loss is accelerating. Previous studies had identified melting of glaciers in the island’s south-east and north-west, but the assumption had been that the ice sheet to the north-east was stable.

Four times as fast

It was stable, at least until about 2003. Then higher air temperatures set up the process of so-called dynamic thinning. Ice sheets melt every Arctic summer, under the impact of extended sunshine, but the slush on the glaciers tends to freeze again with the return of the cold and the dark, and since under historic conditions glaciers move at the proverbial glacial pace, the loss of ice is normally very slow.

But global warming, triggered by rising levels of greenhouse gases in the atmosphere, has changed all that. Greenland’s southerly glaciers have been in retreat and one of them, Jakobshavn Isbrae, is now flowing four times faster than it did in 1997.
Now the Danish-led team has examined changes linked to the 600 kilometre-long Zachariae ice stream in the north-east.

This has retreated by about 20 kms in the last decade, whereas Jakobshavn has retreated about 35 kms in 150 years. The Zachariae stream drains around one-sixth of the Greenland ice sheet, and because warmer summers have meant significantly less sea ice in recent years, icebergs have more easily broken off and floated away, which means that the ice stream can move faster. The researchers used satellite studies to measure ice loss.

“North-east Greenland is very cold. It used to be considered the last stable part of the Greenland ice sheet,” said one of the team, Michael Bevis of Ohio State University in the US.

Deep impacts

“This study shows that ice loss in the north-east is now accelerating. So now it seems that all of the margins of the Greenland ice sheet are unstable.”

The scientists used a GPS network to calculate the loss of ice. Glacial ice presses down on the bedrock below it: when the ice melts, the bedrock rises in response to the drop in pressure, and sophisticated satellite measurements can deliver enough information to help scientists put a figure on the loss of ice.

They calculate that between April 2003 and April 2012, the region was losing ice at the rate of 10 billion tons a year.

“This implies that changes at the margin can affect the mass balance deep in the centre of the ice sheet,” said Dr Khan. Sea levels are creeping up at the rate of 3.2 mm a year. Until now, Greenland had been thought to contribute about half a mm. The real figure may be significantly higher. – Climate News Network

Early springs surprise many species

April 7, 2014 in Adaptation, Arctic, Climate, Polar ice, Species loss, Warming, Wildlife

FOR IMMEDIATE RELEASE

Roe deer numbers have been particularly hard hit by seasonal disruption.  Image: Marek Szczepanek via Wikimedia Commons

Roe deer numbers have been particularly hard hit by seasonal disruption.
Image: Marek Szczepanek via Wikimedia Commons

By Tim Radford

As seasonal change suffers ever more disruption, many species are struggling to adapt quickly enough.

LONDON, 7 April – Spring is arriving earlier. This is not necessarily welcome news for Arctic creatures or the roe deer of France. It could be awkward for flower festival organisers as well.

Julienne Stroeve of the US National Snow and Ice Data Centre and colleagues will report in Geophysical Research Letters that the length of the Arctic melt season is growing by several days each decade. When the melt starts earlier, the Arctic Ocean absorbs more radiation: enough in some places to melt four feet in thickness from the Arctic ice cap.

“The lengthening of the melt season is allowing for more of the sun’s energy to get stored in the oceans and increase ice melt during the summer, overall weakening the sea ice cover,” says Stroeve. The Arctic sea ice has now been in decline for four decades.

The seven lowest September sea ice extents in the satellite record have all occurred in the last seven years. A new examination of satellite imagery and data from 1979 to the present shows that the Beaufort and Chukchi Seas are freezing up between six and 11 days later per decade. But the earlier melt is more ominous than the later freeze: the sun is higher and brighter, and delivers more warmth to the seas.

Festival disruption

The earlier spring presents no problems for many plants but it may not be much fun for the organisers of flower festivals who like to announce their events well in advance. Tim Sparks of Coventry University reports in the journal Climate Research that over its 46-year history, the Thriplow Daffodil Weekend in Cambridgeshire in eastern England has been forced to bring its dates forward by 26 days.

The event can attract up to 10,000 visitors, and has raised £300,000 (US $500,000) for charity, so it clearly helps the organisers to set up some advance publicity. Since 1969, mean temperatures in March and April in the UK have risen by 1.8°C.

“The study represents one of the first solid pieces of evidence of flower tourism having to adapt to climate change,” said Professor Sparks. “The issues faced by Thriplow are a microcosm of the wider picture.”

Flower festivals may be able to adapt. Sadly, the roe deer of Champagne have yet to get the message about climate change. To flourish, both nectar seekers and herbivores have to time their breeding patterns to the surge in plant growth.

Three French scientists looked at records of a population of roe deer in the Champagne region of France, and found that although spring has been arriving increasingly earlier, the fawns are being born at around the same dates as they were 27 years ago, and their survival rate is falling, they report in the Public Library of Science journal PLOS Biology. Overall, the roe deer population in the region is also in decline.

Great tits have kept up with climate change, because reproduction is cued by temperature, so they are around at the same time as the explosion in food sources. What sets the biological pace for roe deer is day length, the authors think, and this is not affected by climate change. - Climate News Network

Climate science ‘is beyond argument’

March 17, 2014 in Arctic, Business, Carbon, Climate deniers, Deep Ocean, Economy, Fish, Food security, Global Ocean Commission, Ice Loss, Marine ecology, Ocean acidification, Ocean Warming, Polar ice, Pollution, Science

FOR IMMEDIATE RELEASE

Not as sunny as it seems: The ocean is under attack on many fronts, with climate change foremost among them Image: kein via Wikimedia Commons

Not as sunny as it seems: The ocean is under attack on many fronts, with climate change foremost among them
Image: kein via Wikimedia Commons

By Alex Kirby

The Global Ocean Commission says climate change is one of the key threats to the health of the world’s marine life, which it says faces multiple pressures in a warming world.

HONG KONG, 17 March - South Africa’s former Finance Minister, Trevor Manuel, has derided those who deny the scientific argument that climate change is an urgent problem caused largely by human activity.

He told journalists here: “The science is now incontrovertible. There are a few people in the world who deny it, but they are mainly in lunatic asylums.”

Mr Manuel is one of three co-chairs of the Global Ocean Commission, a panel of global leaders who have just ended a meeting here to finalise the proposals they will present to the United Nations in June.

The meeting agreed that another key threat to the world’s oceans is overfishing and the subsidies which help to make it possible. It says this, and the other factors causing ocean degradation, threaten the food security of as many as 500 million people.

It is deeply worried about pollution. With plastic remains now so pervasive that they are found even in deep seafloor sediments, Mr Manuel said, it sometimes seemed that “you might as well not bother to buy seafood at all – just buy the plastic bag it comes in and eat that.”

Shells corroded

The Commission says climate change threatens the oceans in three main ways: by raising the temperature of the water; by reducing its oxygen content; and by increasing its acidity. Antarctic pteropods, small sea snails also known as sea butterflies, are already being found with severely corroded shells because of acidification, and larger creatures, including bigger shellfish and corals, are likely to be seriously affected.

Another of the co-chairs, José María Figueres, the former president of Costa Rica, told the Climate News Network the Commission was concerned at the prospect of exploitation of the high seas in the Arctic as the region’s sea ice continues to melt.

He said: “Beyond Arctic countries’ EEZs (exclusive economic zones stretching 200 nautical miles from the coast), the melting will leave us with a doughnut-shaped hole in the Arctic high seas, which are not under international control.

“Some nations are now looking to explore there for fish, minerals, valuable biodiversity and other resources. I believe we should not go down that route.

We should listen to the science and follow the precautionary principle, keeping this pristine area off-limits for exploitation until we understand the consequences.

Coalition builders

“We’re already pushing the high seas to the limit. We don’t need to push them over the edge by a lack of proper precaution in the Arctic.”

He said: “The jury is still out on whether we have 20 or 30 years ahead as a window of opportunity to act. But why wait? Listen to the science, which is overwhelming, and to the economics, which are sound.”

Describing the Commission as “not just a bunch of treehuggers, but a group that’s grounded itself in good sound economics”, Mr Figueres said the recommendations it planned to present to the UN on 24 June would represent about 20% of its work. The other 80% would involve building coalitions around each recommendation: there are expected to be no more than 10 in total.

The Commission’s third co-chair is the UK’s former Foreign Secretary, David Miliband. He told the Network: “Answers that sit on a shelf are a waste of time, and people who are positively inclined to protect the oceans are held back by institutional inertia.

“But the interplay between climate change and ocean damage is rising, and it very much needs to. The science of most of the last half-century shows us how we’ve been playing tricks with nature.” – Climate News Network

Arctic melt speeding up

March 9, 2014 in Arctic, Climate Sensitivity, Deep Ocean, Greenland, Marine ecology, Ocean Warming, Polar ice, Solar energy

FOR IMMEDIATE RELEASE

Measuring the sun's reflectivity in the Arctic Image: NASA/Kathryn Hansen via Wikimedia Commons

Measuring the sun’s reflectivity in the Arctic
Image: NASA/Kathryn Hansen via Wikimedia Commons

By Tim Radford

It’s long been established that Arctic ice is on the retreat but it’s the pace of change that’s surprising scientists: latest studies show the region is at its warmest for 40,000 years. 

LONDON, 9 March - Ice in the Arctic continues to retreat. The season without ice is getting longer by an average of five days every 10 years, according to a new study in Geophysical Research Letters.  And in some regions of the Arctic, the autumn freeze is now up to 11 days later every decade.

This means that a greater proportion of the polar region for a longer timespan no longer reflects sunlight but absorbs it. This change in albedo – the scientist’s term for a planet’s reflectivity – means that open sea absorbs radiation, stays warmer, and freezes again ever later.

Warming accelerates

None of this is news: sea ice in the Arctic has been both retreating and thinning in volume for four decades. Researchers have tracked the retreat of the snow line to find tiny plants exposed that had been frozen over 40,000 years ago: the implication is that the Arctic is warmer now than it has been for 40 millennia.

This warming threatens the animals that depend for their existence on a stable cycle of seasons  and is accelerating at such a rate that the polar ocean could be entirely free of ice in late summer in the next four decades.

So Julienne Stroeve, of University College London and her colleagues have provided yet further confirmation of an increasing rate of change in the region in their latest study.

The scientists examined satellite imagery of the Arctic for the last 30 years, on 25 square kilometer grid, to work out the albedo of each square for every month they had data.

Their headline figure of five days is an average: in fact the pattern of freeze and thaw in the Arctic varies. In one region the melt season has been extended by 13 days, in another the melt season is actually getting shorter.

Energy increases

This increasing exposure to summer sunlight means that ever greater quantities of energy are being absorbed: several times the energy of the atomic bomb dropped on Hiroshima hits every square kilometer of the open Arctic Ocean.

“The extent of sea ice in the Arctic has been declining for the last four decades,” said Professor Stroeve, “and the timing of when melt begins and ends has a large impact on the amount of ice lost each summer.

With the Arctic region becoming more accessible for longer periods of time, there is a growing need for improved prediction of when the ice retreats and reforms in the water.” - Climate News Network

 

US urges fishing ban in melting Arctic

February 24, 2014 in Adaptation, Arctic, Fish, Indigenous peoples, Marine ecology, Ocean Warming

FOR IMMEDIATE RELEASE

A US Coastguard vessel patrols the Arctic Ocean: Once the ice goes, the trawlers will not be far behind Image: PA1 Timothy Tamargo via Wikimedia Commons

A US Coast Guard vessel patrols the Arctic Ocean: Once the ice goes, the trawlers will not be far behind
Image: PA1 Timothy Tamargo via Wikimedia Commons

By Alex Kirby

Washington is urging countries that share the Arctic to ban commercial fishing in the offshore Arctic Ocean, something that will soon be possible for the first time in human history as the ice melts.

LONDON, 24 February – The countries that ring the Arctic Ocean will soon face a dilemma: can they risk commercial fishing fleets shooting their nets in those soon-to-be-ice-free seas?

Before long – quite possibly before mid-century – the Arctic Ocean will be free of ice during part of each summer, scientists are now saying confidently. For better or worse that will open up huge opportunities for shipping and hydrocarbon exploitation. And for the first time in recorded history it will allow the fishing boats access to whatever has lived undisturbed until now beneath the ice.

A three-day meeting began today in Nuuk, the capital of Greenland, where US officials are hoping to persuade the other nations which border the Arctic Ocean to introduce a moratorium on high seas fishing there (the other members of the group are Canada, Russia and Norway).

David Benton, of the US Arctic Research Commission (USARC), said the Americans were proposing an agreement “that would close the international waters of the Arctic Ocean to commercial fishing until there is a good scientific foundation on which to base management of any potential fishing”.

All coastal countries control fisheries within 200 miles of their own coastlines. The high seas beyond that limit belong to no country and can be protected only by international agreement.

Once the five Arctic nations have agreed a fishing moratorium, Benton said, they would then approach other countries with major commercial fishing fleets, such as China, Japan and Korea, to negotiate full protection for the central Arctic Ocean.

Previous ban

The Arctic was experiencing a fairly rapid rate of change, said Benton, as the permanent ice melted. “That’s potentially causing large changes in the ecosystem, but we don’t understand what’s going on up there. If we want to do things right, this is the approach we should be taking.”

In 2009, the US adopted its own Arctic Fishery Management Plan, closing American waters north of Alaska to commercial fishing until scientific research proves that the fishery is sustainable. Scott Highleyman, director of the international Arctic program for the Pew Charitable Trusts, said that had been a precaution that took account of the way warming was changing the Arctic ecosystem faster than science could keep up with it.

He told the Los Angeles Times: “There are no stock surveys or scientific assessments for fish there. You don’t want to fish a place where you don’t know the fish population dynamics. Any time we’ve done that, it led to catastrophic overfishing.” One example, Highleyman said, is the New England Atlantic cod fishery, which was shut down in the 1980s due to overfishing, costing 50,000 jobs.

An open letter to the Arctic governments, signed by 2,000 scientists from around the world, says that if the Ocean is overfished that will damage species that live there, including seals, whales and polar bears, and the people who use them for food.

“Until recently, the region has been covered with sea ice throughout the year, creating a physical barrier to the fisheries,” the scientists wrote. “A commercial fishery in the central Arctic Ocean is now possible and feasible.” – Climate News Network

Arctic ‘is set to reach 13°C by 2100′

February 20, 2014 in Arctic, Climate risk, Feedbacks, Ice Loss, NOAA, Polar ice, Temperature Increase

FOR IMMEDIATE RELEASE

Iceberg in Rødefjord (Scoresby Sund), Greenland: Arctic sea ice volume has shrunk by 75% since the 1980s Image: Hannes Grobe 20:05, 16 December 2007 (UTC)

Iceberg in Rødefjord (Scoresby Sund), Greenland: Arctic sea ice volume has shrunk by 75% since the 1980s
Image: Hannes Grobe 20:05, 16 December 2007 (UTC) via Wikimedia Commons

By Alex Kirby

There is wide political agreement that global average temperatures should not rise more than 2°C above their level several centuries ago. The rise some scientists expect in the Arctic by 2100 is more than six times as great.

LONDON, 20 February – US scientists say that by the end of this century temperatures in the Arctic may for part of each year reach 13°C above pre-industrial levels. Global average temperatures have already risen by about 0.8°C over the level they were at in around 1750.

The Intergovernmental Panel on Climate Change said in its 2013 Fifth Assessment Report that it thought the probable global temperature rise by 2100 would be between 1.5 and 4°C under most scenarios. Most of the world’s governments have agreed the global rise should not be allowed to exceed a “safety level” of 2°C.

But James Overland, of the US National Oceanic and Atmospheric Administration, and colleagues, writing in the American Geophysical Union’s journal Earth’s Future, say average temperature projections show an Arctic-wide end of century increase of 13°C in the late autumn and 5°C in late spring for a business-as-usual emission scenario.

By contrast, a scenario based on climate mitigation would reduce these figures to 7°C and 3°C respectively. The team say they consider their estimates “realistic”, and they have used a large number of models in reaching them.

Ice fall

The Arctic is known to be warming fast, much faster than regions further south. The mean Arctic temperature is 1.5°C higher today than it was between 1971 and 2000, double the warming that occurred at lower latitudes during the same period.

The authors say Arctic sea ice volume has decreased by 75% since the 1980s. Reasons for the rapid warming include feedback processes linked to changes in albedo, which have caused a big drop in the ability of the Arctic’s snow and ice to reflect sunlight back into space.

As they melt they are replaced by darker rock and water, which, instead of reflecting the warmth away from the Earth, absorb it and help to raise the temperature. There are also changes taking place in ocean and land heat storage. These all help to amplify the effect of greenhouse gases in warming the Arctic.

Professor Overland and his colleagues say it is very likely that the Arctic Ocean will become nearly free of sea ice at some seasons of the year before 2050, and possibly within a decade or two. This in turn will further increase Arctic temperatures, economic access (for oil and gas exploitation and by shipping), and ecological shifts.

No agreement

The greenhouse gas emissions mitigation scenario the authors use (known as RCP4.5) assumes atmospheric concentrations of carbon dioxide (CO2) of about 538 parts per million (ppm). Before the Industrial Revolution concentrations were at about 280 ppm, and had changed little over many millennia. They are now at their highest in 15 million years, and rising at about 2 ppm annually, reaching almost 400 pp

Greenhouse gas emissions continue to rise, and so far world leaders have not managed to agree how to reduce them. Their efforts are now concentrated on next year’s UN climate change convention meeting, to be held in the French capital, Paris.

Professor Overland and his colleagues conclude that major changes in the Arctic climate are “very likely” over the decades until 2040, including “several additional months of open water in the Arctic Ocean, ever earlier snow melt, further loss of permafrost, increased economic access, and dramatic impacts on ecological systems.”

They say the large difference in surface air temperatures in the Arctic at the end of the century, which they are confident will happen, “makes a strong case to begin mitigation activities for greenhouse gases”. – Climate News Network

Half of plants may move in warmer world

February 16, 2014 in Adaptation, Agriculture, Arctic, China, forest fires, Vegetation changes, Warming, Wildlife

FOR IMMEDIATE RELEASE

Vegetation changes on a warmer planet may mean that giant pandas go hungry Image: Jeff Kubina via Wikimedia Commons

Vegetation changes on a warmer planet may mean that giant pandas go hungry
Image: Jeff Kubina via Wikimedia Commons

By Tim Radford

An international team of scientists says that by the end of the century one probable consequence of climate change will be a change in patterns of vegetation over much of the planet’s land surface.

LONDON, 16 February – By 2100, vegetation patterns will be shifting in almost half the land area of the planet, according to new research in the journal Global and Planetary Change.

Song Feng of the University of Arkansas in the US and colleagues in Nebraska, China and South Korea have taken a long cool look at what the projected patterns of warming are likely to do to the planet’s mosaic of climate types. And they predict dramatic changes.

Climate type is a century-old idea useful for making sense of geographical zones: regions are grouped according to the type of vegetation they support. Since a global map of native vegetation types can also deliver useful information about altitude, rainfall, soil type, prevailing weather and latitude, geographers regard the Köppen-Geiger classification – and an updated version known as Köppen-Trewartha – as a helpful way of describing the world.

Feng and his colleagues decided to see what projected changes in temperature would do to climate types. He wasn’t the first to do so; scientists from the US National Oceanic and Atmospheric Administration reported in 2013 in Nature Climate Change on the probable speed of change in such zones.

But science advances by challenge and replication, and the Arkansas team began looking for themselves at the details of simulated change under the notorious “business as usual scenario”  – the one in which global fossil fuel use continues to increase and higher levels of carbon dioxide and other greenhouse gases concentrate in the atmosphere.

The Intergovernmental Panel on Climate Change has made a series of predictions of rising global average temperatures, but plants, of course, don’t care about global average temperatures: they are however distinctly vulnerable to local extremes of frost and heat.

The Feng scenario projected an increase of between 3°C and 10°C; the team analysed observations made between 1900 and 2010, and then ran computer simulations from 1900 to 2100.

Drastic changes ahead

In the last three decades of the 21st century, for instance, northern winter temperatures are likely to rise by between 3° and 12°C; Arctic coastal temperatures are likely to rise by 8°C; warming in mid-latitudes is likely to be between 5°C and 7°C, the tropics and the southern hemisphere around 5°C.

The Arctic will shrink. Sub-polar vegetation is expected to advance by 5° of latitude and the temperate zones will push northwards too. Arid and semi-arid climate zones are expected to expand by somewhere between 3.3 and 6.6 million square kilometers in the last three decades of this century.

What this does to native vegetation types is hard to predict in detail but some projections have been made. In the Qinling mountain region of China, for instance, somewhere between 80% and 100% of the bamboo forests on which the giant pandas depend could disappear, because the rising temperature would be “no longer feasible for bamboo growth.”

In the south-western US higher temperatures and drier conditions could lead to more forest fires, and pest outbreaks could lead to changes in forest structure and composition.

As the plants change, the animal species that evolved with the vegetation types could be increasingly at risk. Altogether, up to 46.3% of the planet’s land area could shift to warmer or drier climate types

“Climates are associated with certain types of vegetation. If the surface continues to get warmer, certain native species may no longer grow well in their climate, especially in higher latitudes. They will give their territory to other species. That is the most likely scenario”, said Feng. – Climate News Network

Cat litter killer in the whales of the North

February 14, 2014 in Adaptation, Arctic, Atlantic, Disease, Ice Loss, Indigenous peoples, Marine ecology, Ocean Warming, Polar ice, Wildlife

FOR IMMEDIATE RELEASE

Blissful domesticity: But even domestic cats can spread Toxoplasma gondii

Blissful domesticity: But even domestic cats can spread Toxoplasma gondii

By Tim Radford

One consequence of a warming climate is new patterns of disease, and researchers have identified two parasites formerly unknown in the Arctic in marine mammals.

CHICAGO, 14 February – The great Arctic thaw – up to 50% of sea ice by area and 75% by volume in the summer season – could be offering new opportunities for one of the planet’s most successful parasites. Toxoplasma gondii, an infection spread by almost all cat species, has been identified for the first time in the western Arctic Beluga whale.

Toxoplasma is found almost everywhere that cats settle: domestic pets, ocelots, cougar, wild cats all carry and spread oocysts of the parasite (structures it uses to transfer to new hosts) in their faeces, to be spread further with discarded cat litter.

The parasite is notoriously hard to kill. Scientists store their samples in sulphuric acid, and the creature can survive unharmed in bleach. It is, however, routinely killed by freezing conditions, or boiling water.

The suspicion is that with the steady, sustained warming of the Arctic over the past 30 years, chiefly because of a buildup of carbon dioxide in the atmosphere, the retreat of the ice has begun to allow new traffic in parasite infections.

Another parasitic killer, a new strain called Sarcocystis pinnipedi, normally found only in the highest, iciest latitudes, has been linked with mass deaths too: 406 grey seals died in 2012 in the north Atlantic. It has also been observed to kill Steller’s sea lions, Hawaiian monk seals, walruses, grizzly bears and polar bears as far south as British Columbia.

In the case of Toxoplasma, warming polar summers could have created conditions in which the parasite could find new warm-blooded hosts further north. In the case of the second parasite, the loss of ice has meant a greater mixing of species, and allowed Sarcocystis to find new hosts in warmer waters.

Cause of blindness

“Ice is a major barrier for pathogens”, Michael Grigg, of the US National Institutes of Health told the American Association for the Advancement of Science annual meeting here. “What we are seeing with the big thaw is the liberation of pathogens gaining access to vulnerable new hosts and wreaking havoc.”

Toxoplasma can also infect people: it is the leading cause of infectious blindness in humans, and can be dangerous to unborn children and to people with compromised immunity.

It has been found in human communities in northern Quebec, perhaps spread by the consumption of dried seal meat. The discovery of Toxoplasma in Beluga whales has begun to worry health officials. Belugas are part of the traditional diet of the Inuit hunters of the far North.

Seals, walruses and polar bears are all what scientists like to call “ice obligate animals”: the ice sheet provides them with their preferred habitat. With the loss of the ice, new species are colonizing the Arctic, and those creatures that cannot now use the ice sheet have been forced to invade new habitats.

“Marine mammals can act as ecosystem sentinels because they respond to climate change through shifts in distribution, timing of their movements and feeding locations”, said Sue Moore of the US National Oceanic and Atmospheric Administration. “These long-lived mammals also reflect changes to the ecosystem in their shifts in diet, body condition and physical health.” – Climate News Network

Greenland’s fastest glacier picks up pace

February 6, 2014 in Arctic, European Space Agency, Glaciers, Greenland, Ice Loss, Lakes, Sea level rise

FOR IMMEDIATE RELEASE

An iceberg calved from the rapidly accelerating Jakobshavn Isbræ floats in Greenland's Disko Bay Image: Courtesy of Ian Joughin, PSC/APL/UW

An iceberg calved from the rapidly accelerating Jakobshavn Isbræ floats in Greenland’s Disko Bay
Image: Courtesy of Ian Joughin, PSC/APL/UW

By Tim Radford

Research from the Arctic shows Greenland’s fastest-flowing glacier has doubled its summer flow pace in a decade, and ice cover on Alaskan lakes is declining.

LONDON, 6 February – A fast-moving Arctic glacier which has earned a place in history is now accelerating even more quickly. The Jakobshavn Isbrae (the Danish word for glacier) is a massive river of ice from the Greenland ice sheet to an Atlantic ocean fjord and is thought – there is no way of proving this – to be the source of the giant iceberg that sank the Titanic in 1912.

According to research published in the European Geosciences Union journal The Cryosphere, summer flow speeds have doubled yet again since a Nasa measurement in 2003. And that in turn represented a doubling of flow speeds since 1997.

The Jakobshavn glacier is Greenland’s fastest-flowing glacier. It now moves at 17 kilometres a year. That works out at 46 metres a day. With accelerations like this, phrases like “glacial pace” may no longer serve as clichés of lethargic movement. These speeds are recorded in the summer, when all glaciers are more likely to be a bit friskier. But even when averaged over the whole year, the glacier’s flow has accelerated threefold since the 1990s.

Icebergs “calve” from glaciers – they break off and drift out to sea. The Arctic ice sheet is thinning, and most of the planet’s glaciers are retreating as climates warm, so the Jakobshavn glacier is carrying less ice, at a faster rate, over shorter distances than ever before, and by the end of the century could have shifted 50 kilometres upstream. But right now it is also contributing to sea level rise at a faster rate.

“We know that from 2000 to 2010 this glacier alone increased sea level by about 1mm”, said Ian Joughin, of the Polar Science Centre at the University of Washington, who led the research. “With the additional speed it will likely contribute a bit more than this over the next decade.”

The scientists used satellite data to measure the rate of summer change in Greenland. But other satellite radar imagery has begun to reveal an ominous picture of change elsewhere in the Arctic, on the north slope of Alaska. Even during the winter months, ice on the lakes of Alaska has begun to decline. Warmer climate conditions means thinner cover on shallow lakes and a smaller fraction that freeze entirely during the winter months.

“We were stunned to observe such a dramatic ice decline during a period of only 20 years”

Cristina Surdu of the University of Waterloo in Canada and colleagues report in The Cryosphere that there has been a 22% fall in grounded ice – frozen from surface to lakebed – between 1991 and 2011.

They expected to find a decline in ice thickness when they embarked on a study of radar observations of 402 lakes near Barrow in Alaska from the European earth resources satellites ERS-1 and ERS-2. That was because they already had temperature and precipitation records from Barrow dating back five decades.

Freeze dates in the region are now occurring on average six days later than in the past, and the ice is breaking up on average around 18 days earlier.

“At the end of the analysis, when looking at trend analysis results, we were stunned to observe such a dramatic ice decline during a period of only 20 years”, Surdu said. – Climate News Network