Category Archives: Carbon Dioxide

Record CO2 levels fuel urgent calls for emissions cuts

New York traffic congestion is a stark illustration of the CO2 emissions danger Image: ILMRT via Wikimedia Commons
New York traffic congestion provides a stark reminder of the CO2 emissions danger
Image: ILMRT via Wikimedia Commons

By Tim Radford

The alarming message from international scientists to political leaders meeting at tomorrow’s UN climate summit in New York is that record global CO2 emissions this year mean “delaying action is not an option”.

LONDON, 22 September, 2014 − Global carbon dioxide emissions will this year reach a new record as power stations, cars, buses, trains, aircraft, tractors, factories, farms and cement works continue to burn fossil fuels − releasing an estimated 40 billion tonnes of the greenhouse gas into the atmosphere.

And the world’s chances of limiting global average surface warming to 2°C – an ambition agreed by the world’s political leaders in Copenhagen in 2009 − are dwindling, according to new studies published just ahead of the United Nations summit on climate change opening in New York tomorrow.

Professor Pierre Friedlingstein, Chair in Mathematical Modelling of Climate Systems at Exeter University, UK, and  a consortium of colleagues from the UK, Norway, Switzerland, Austria, Germany, the Netherlands and Australia report in Nature Geoscience that despite attempts to reduce fossil fuel dependence, greenhouse gas emissions have on average continued to grow by 2.5% per year for the last decade.

Ration exhausted

This means that, if there is a ration or quota of emitted carbon dioxide consistent with a 2°C increase, then the world has already used up two-thirds of it. And if it goes on burning fuel at the 2014 rate, then this ration will be exhausted within 30 years.

The study, part of a package of papers and reflections in Nature Geoscience and Nature Climate Change calculated to inform debate and crystallise opinion, has been widely endorsed by other climate scientists.

David Reay, professor of carbon management at the University of Edinburgh, UK, said: “If this were a bank statement, it would say our credit is running out.”

The scientists, partners in a research consortium called the Global Carbon Project, list the top four emitters of carbon dioxide: China – emissions grew by 4.2%; US – emissions increased by 2.9%, thanks to a rebound in coal consumption; India – emissions grew by 5.1%, as a result of robust economic performance; European Union – emissions actually fell by 1.8%, due to weak economic growth.

“China now emits more than the US and EU combined and has CO2 emissions per person 45% higher than the global average, exceeding even the EU average,” said one of the report’s authors, Robbie Andrew, a senior research fellow at the Centre for International Climate and Environmental Research – Oslo (Cicero), in Norway.

And co-author Glen Peters, also a senior research fellow at Cicero, said: “Globally, emissions would need sustained and unprecedented reductions of around 7% per year for a likely chance to stay within the quota.”

Corinne Le Quéré, director of the Tyndall Centre for Climate Change Research at the University of East Anglia, UK, said: “The human influence on climate change is clear. We need substantial and sustained reductions in CO2 emissions from burning fossil fuels if we are to limit climate change.

“Politicians . . . need to think very carefully about their
diminishing choices exposed by climate science”

“We are nowhere near the commitments necessary to stay below 2°C of climate change − a level that will already be challenging to manage for most countries around the world, even for rich nations. Politicians meeting in New York need to think very carefully about their diminishing choices exposed by climate science.”

Professor Friedlingstein stressed: “Delaying action is not an option. We need to act together, and act quickly if we are to stand a chance of avoiding climate change not long into the future, but within many of our own lifetimes.”

Most of the message in the Nature Geoscience paper is already familiar as scientists in Europe, Asia and the US have repeatedly stressed that even a 2°C increase in average global temperatures could have alarming consequences for hundreds of millions of people.

The timing of the publication is a reminder of the problem’s urgency, and many of the Nature Geoscience report’s authors also offer a prescription for action in the journal Nature Climate Change.

In this they try to outline ways in which the burden of reduction might be shared among the world’s nations. This is essentially a political problem that will require sustained international negotiation and argument.

Prof Myles Allen, who heads the Climate Dynamics Group at Oxford University, UK, said: “It is depressing that the immediate reaction to the news we have a limited carbon pie is discussion of how countries can slice it up. We didn’t save the ozone layer by rationing deodorant.”

Abstract goals

But David Victor, professor of international relations at the University of California San Diego, in an accompanying essay in Nature Climate Change, warns that researchers and campaigners “have focused too much scientific talent on abstract goals and not enough on understanding the practical actions that individual governments, firms and individuals would take to meet global goals”.

The New York summit is one of a series that will lead up to the UN climate change summit in Paris in 2015, and Prof Victor foresees a need for climate scientists to work with social scientists to understand better how attitudes change, and policies are decided.

He concludes: “It is highly unlikely that the Paris summit will deliver an accord that limits warming to 2°C, and hopes for that outcome in the scientific community are built on a naïve vision that science sets goals and that politicians, once they shed the scales from their eyes, will follow in lockstep.

“Awareness of what the behavioural sciences can bring suggests, as well, that the era of really important science is perhaps just beginning.” – Climate News Network

Acidic seas block fishes’ survival mechanism

Sharks such as the smooth dogfish face a new man-made threat Image: NOAA via Wikimedia Commons
Climate of concern: sharks such as the smooth dogfish face a new man-made threat
Image: NOAA via Wikimedia Commons

By Tim Radford

Scientific studies show that the sense of smell so vital for the survival of predators such as sharks, as well as for their prey, is being impaired as carbon dioxide increases acidification of oceans.

LONDON, 18 September, 2014 − Global warming could be bad for sharks, too. These ocean-going creatures that have survived 420 million years of natural climate change could be at risk from increasingly acidic seas, according to two entirely different scientific studies.

The sharks are already in trouble everywhere. They are pursued as food or feared as a threat, and the habitat they favour is gradually being degraded or destroyed.

But Danielle Dixson, a marine conservation biologist at the Georgia Institute of Technology in the US, and colleagues report in Global Change Biology that changes in the pH value of water – in other words, as the seas became more acidic – have interfered with a shark’s ability to smell food.

Behaviour change

Dr Dixson has already shown that increasing acidification, due to greater levels of carbon dioxide in the atmosphere, could change the behaviour of reef fish, seemingly making them less afraid of predators because the acidic waters disrupt a specific receptor in the fish’s nervous system.

This time, she experimented with a shark known as the smooth dogfish (Mustelus canis), which is found in the Atlantic waters off the US coast. She tested 24 sharks in a 10-metre tank with two currents or plumes of water. One was normal sea water, and the other was rich in the odour of squid. As expected, the sharks showed a distinct preference for the smell of food.

Then she and her colleagues enriched the water with carbon dioxide − to levels predicted for mid-century as greenhouse emissions continue to rise, and the seas become more rich in carbonic acid.

When released into the most acidic water, the sharks actually avoided the plume of squid odour. Once again, the change in the water’s pH seemed to have disrupted an all-important receptor, and thus the sharks’ interest in hunting.

“Sharks are like swimming noses, so chemical cues are really important for them in finding food,” Dr Dixson said.

Less aggressive

Overall activity did not change significantly, but shark attack behaviour did. The squid odour was pumped through bricks to give the sharks something to push against, but the sharks in the most acidic waters responded less aggressively.

“They significantly reduced their bumps and bites on the bricks, compared to the control group,” Dr Dixson said. “It’s like they’re uninterested in their food.”

There is always the chance that, as acidity levels slowly rise, sharks will adjust or adapt. But increasing acidification may not even give them the chance to adapt.

In a second paper, this time in the Proceedings of the Royal Society, Rui Rosa, senior researcher at the Centre for Oceanography in Cascais, Portugal, and colleagues considered the impact of warmer and more acidic seas on the survival of the newly-hatched tropical bamboo shark (Chiloscyllium punctatum), normally found in the intertidal zones of the western Pacific.

The researchers tested hatchlings in tanks at temperatures and pH values predicted for 2100, and found “significant impairment” in survival rates.

In their experiments at normal temperature conditions, mortality among the hatchlings was zero. In experimental conditions, behaviour changes were apparent from the outset and, within 30 days, more than 40% had died. – Climate News Network

Fracking fuels conflict over water resources

A wind farm in Nova Scotia, Canada, where a fracking ban favours renewable energy Image: Dennis Jarvis via Wikimedia Commons
A wind farm in Nova Scotia, Canada, where a fracking ban favours renewable energy
Image: Dennis Jarvis via Wikimedia Commons

By Paul Brown

Limited water supplies near the richest oil and gas reserves accessible through fracking threaten to create tensions that could block future projects using the controversial extraction process.

LONDON, 15 September, 2014 − The vast quantities of water needed to release oil and gas by fracturing rock formations are not available in large areas with the richest deposits – posing major challenges to the future viability of fracking.

According to a report by the World Resources Institute (WRI), 38% of the areas where shale gas and oil is most abundant is arid or already under severe water stress – and the 386 million people living in these areas need all the spare water they can get.

Among the countries that have areas with potentially large quantities of shale underground, but which have limited water supplies, are China, India, Pakistan, South Africa, Mexico, the US and the UK.

Andrew Steer, president of the WRI, said: “These factors pose significant social, environmental, and financial challenges to accessing water, and could limit shale development.”

Stumbling block

The report says that estimates of shale gas reserves add 47% to the global, technically-recoverable natural gas reserves and 11% to the oil reserves. But it points out that that “as countries escalate their shale exploration, limited availability of fresh water could become a stumbling block”.

The method of releasing the trapped gas and oil in the process known as fracking is controversial because it involves injecting large quantities of water and chemicals underground to fracture the rock and release the oil and gas.

In some areas of the US, where fracking has been pioneered and has enabled large new supplies of oil and gas to be produced to the benefit of the economy, there has been trouble with the release of methane into the atmosphere and contamination of water supplies.

In many areas that have potential for fracking, this had led to a public backlash − even where there is plenty of potential water for use in the process.

An example is the Canadian province of Nova Scotia, where the Environment Minister, Andrew Younger, has imposed an indefinite ban on fracking onshore and plans to bring forward legislation to ban the practice.

“Nova Scotians have clearly indicated they are not yet ready for the use of hydraulic fracturing in the development of shale reserves,” Younger said. “We will respect their views.”

Areas of stress

The WRI has produced a detailed map of shale oil and gas reserves, overlaid with colours indicating of areas high water stress. It illustrates where most conflict over the use of resources is likely to be.

The report comments on the problems facing companies and governments in persuading their citizens to sacrifice limited water supplies so that oil and gas can be extracted.

“The findings indicate that companies developing shale resources internationally are likely to face serious challenges to accessing fresh water in many parts of the world,” the report says.

“These challenges highlight a strong business case for strategic company engagement in sustainable water management at local and regional levels.

“They also point to a need for companies to work with governments and other sectors to minimise environmental impacts and water resources depletion.” – Climate News Network

Illegal deforestation is growing problem for climate

A vast palm oil plantation sweeps across the foothills of West Java, Indonesia Image: Achmad Rabin Taim via Wikimedia Commons
A vast palm oil plantation sweeps across the foothills in West Java, Indonesia
Image: Achmad Rabin Taim via Wikimedia Commons

By Alex Kirby

Foreign demand for agricultural products worth an estimated $61 billion annually is driving up the devastating rate at which tropical forest is being cleared illegally – and pushing up carbon emissions.

LONDON, 12 September, 2014 – A report by the US non-governmental organisation, Forest Trends, says 49% of all recent tropical deforestation is the result of illegal clearing for commercial agriculture.

It says that most was driven by foreign demand for agricultural products, including palm oil, beef, soya and wood products – and  the impact on forest-dependent people and on biodiversity is “devastating”.

The report, funded by the UK Department for International Development, estimates that the illegal conversion of tropical forests for commercial agriculture produces 1.47 gigatonnes (1,470,000,000 tonnes) of carbon a year − equivalent to 25% of the European Union’s annual fossil fuel-based emissions. NASA said in 2012 that tropical deforestation had accounted for about 10% of human carbon emissions from 2000 to 2005.

Household products

“This is the first report to show the outsize role that illegal activities play in the production of hundreds of food and household products consumed worldwide,” said Michael Jenkins, the president of Forest Trends.

The report’s author is Sam Lawson, founding director of the investigative research organisation, Earthsight. He said that the equivalent of “five football fields of tropical forest are being destroyed every minute to supply these export commodities. There is hardly a product on supermarket shelves that is not potentially tainted.”

He said the report’s figures were obtained using conservative estimates based on documented violations of significant impact.

The study says that 90% of Brazil’s deforestation between 2000 and 2012 was illegal, and was caused mainly by a failure to conserve a percentage of natural forests in large-scale cattle and soya plantations, as required by Brazilian law. Much of the deforestation, the study acknowledges, happened before 2004, when the Brazilian government implemented an action plan to reduce deforestation.

Eighty per cent of deforestation in Indonesia was illegal − mostly for large-scale plantations producing palm oil and timber, 75% of which is exported. Brazil and Indonesia produce the highest level of agricultural commodities destined for global markets − many of them winding up in cosmetics or household goods (palm oil), animal feed (soya), and packaging (wood products).

Illegal deforestation is widespread across Asia, Latin America, and Africa.

In Papua-New Guinea, millions of hectares of forest have been illegally licensed for deforestation in recent year, and a recent parliamentary inquiry in the country found that 90% of these licences were issued by corrupt or fraudulent means.

In Tanzania, forests have been illegally razed to make way for jatropha, a plant commonly used to produce biofuels.

Flouting the law

“All over the tropics, companies are bribing officials to obtain permits, trampling the legal or customary rights of indigenous peoples and other forest-dwelling communities, clearing more forest than they are allowed, and causing pollution and environmental devastation by flouting the law,” Lawson said.

The report says the international trade in agricultural commodities produced on land illegally converted from tropical forest is worth an estimated US$61 billion annually. The EU, China, India, Russia and the US are among the largest buyers of these goods.

The problem is spreading. The study says that in the Congo Basin, for example, two of the three largest new oil palm projects have been found to be operating illegally. One of these, in the Republic of Congo, is set to double the country’s deforestation rate.

“The current unfettered access to international markets for commodities from illegally-cleared land is undermining the efforts of tropical countries to enforce their own laws,” Lawson said. “Consumer countries have a responsibility to help halt this trade.” − Climate News Network

Weather patterns show climate is changing US

Streams feeding the Verde River in Arizona may be drying up Image: Jennifer Horn via Wikimedia Commons
Streams feeding the Verde River in Arizona may be drying up
Image: Jennifer Horn via Wikimedia Commons

By Tim Radford

Fiercer tornadoes, more prolonged periods of drought and loss of native fish species are some of the damaging impacts predicted for the US as greenhouse gas emissions continue to rise.

LONDON, 10 September, 2014 − The climate is changing . . . and America’s heartland and southwest are changing with it.

In the southwestern state of Arizona, the streams may be drying up − and that could mean that native fish species will die out.

In the midwest states that citizens call Tornado Alley, the evidence is that there are fewer tornado days per year, but the density and strength of those tornadoes that do form is growing as greenhouse gas emissions continue to rise.

And in the west, which is in the grip of a prolonged drought, things are looking up − but not in a good way. Relieved of the weight of water they normally bear – the 240 billion tonnes of snow and rain that have not fallen since the drought began – the land is starting to rise, with mountains as much as 15 millimetres higher.

More arid

The current drought may not be evidence of climate change – there is a long history of periodic drought in the region – but in general the US southwest is expected to become steadily more arid as planetary temperatures soar.

Kristin Jaeger, assistant professor at Ohio State University’s School of Environment and Natural Resources, reports in the Proceedings of the National Academy of Sciences of the USA that she and colleagues decided to model the surface flow of the Verde River Basin in Arizona by 2050.

Fish that live in these waters are already threatened or endangered, their survival depending on being able to move around the watershed to eat, to spawn and to raise offspring. But the computer simulations for the future suggest that there will be a 17% increase in dried-up streams and a 27% increase in days when there will be no flow of water at all.

What this will do is sever connections between streams, and the deeper pools will become isolated. Native species, such as the speckled dace, the roundtail chub and the Sonora sucker, will increasingly have nowhere to go.

Dr Jaeger calls the estimates conservative. She and her fellow researchers did not take account of the groundwater that will be removed to support the expected 50% increase in human population in Arizona by 2050.

In the US, tornadoes are a fact of life – and death. In 2011, for example, it experienced 1,700 storms during the tornado season, and 550 people died. But scientists have begun to detect a pattern of change. In 1971, there were only 187 days with tornadoes, and in 2013, there were only 79 days, according to James Eisner, a geographer at Florida State University, and colleagues in a report in the journal Climate Dynamics.

But the tornadoes that do form are distinguished by what the scientists call “increasing efficiency”. They are more severe, and there are more of them on a given day.

“We may be less threatened by tornadoes on a day-to-day basis, but when they do come, they come like there’s no tomorrow,” said Professor Eisner.

Meanwhile, Adrian Borsa  and other researchers at Scripps Institution of Oceanography in San Diego report in the journal Science that they have been looking at data from GPS satellite ground stations, to discover that – thanks to the current drought – all of them are on the move.

Highest uplift

Overall, the surface of the arid west has gained 4mm in altitude since the drought began, and the highest uplift, 15mm, has been measured in the mountains.

They put it down to the water that has not fallen and which would normally have covered the mountains as heavy snow. Altogether, the water deficit is 240 gigatonnes, or 62 trillion gallons − the equivalent of a 10cm layer of water across the entire west of the US.

This is roughly the equivalent of the mass of ice lost each year from the Greenland ice sheet.

The crustal movement is not expected to have any impact on the likelihood of earthquakes in, for example, California, but the study could offer researchers a new way of measuring fresh water resources over very large regions.

It could be a case of don’t worry about all those rainfall gauges, just watch how the earth moves. Or, in the researchers technical language, such observations “have the potential to expand dramatically the capabilities of the current hydrological observing network”. – Climate News Network

Ocean acidification and GHGs hit record levels

Reef grief: corals, fisheries and tourism will all be damaged by  ocean acidification Image: Ritiks via Wikimedia Commons
Reef stricken: corals, fisheries and tourism will all be damaged by ocean acidification
Image: Ritiks via Wikimedia Commons

By Alex Kirby

New scientific evidence of the highest greenhouse gas concentrations on record is compounded by the revelation that oceans are acidifying faster than at any time in the last 300 million years.

LONDON, 9 September, 2014 – The World Meteorological Organisation (WMO) reports that the amounts of atmospheric greenhouse gases reached a new high in 2013, driven by rapidly rising levels of carbon dioxide.

The news is consistent with trends in fossil fuel consumption. But what comes as more of a surprise is the WMO’s revelation that the current rate of ocean acidification, which greenhouse gases (GHGs) help to cause, appears unprecedented in at least the last 300 million years.

The details of growing GHG levels are in the annual Greenhouse Gas Bulletin, published by the WMO – the United Nations specialist agency that plays a leading role in international efforts to monitor and protect the environment.

They show that between 1990 and 2013 there was a 34% increase in radiative forcing – the warming effect on our climate – because of long-lived greenhouse gases such as carbon dioxide (CO2), methane and nitrous oxide.

Complex interactions

The Bulletin reports on atmospheric concentrations – not emissions − of greenhouse gases. Emissions are what go into the atmosphere, while concentrations are what stay there after the complex system of interactions between the atmosphere, biosphere (the entire global ecological system) and the oceans.

About a quarter of total emissions are taken up by the oceans and another quarter by the biosphere, cutting levels of atmospheric CO2.

In 2013, the atmospheric concentration of CO2 was 142% higher than before the Industrial Revolution started, in about 1750. Concentrations of methane and nitrous oxide had risen by 253% and 121% respectively.

The observations from WMO’s Global Atmosphere Watch network showed that CO2 levels increased more from 2012 to 2013 than during any other year since 1984. Scientists think this may be related to reduced CO2 absorption by the Earth’s biosphere, as well as by the steady increase in emissions.

Although the oceans lessen the increase in CO2 that would otherwise happen in the atmosphere, they do so at a price to marine life and to fishing communities − and also to tourism. The Bulletin says the oceans appear to be acidifying faster than at any time in at least the last 300 million years.

“We know without any doubt that our climate is changing and our weather is becoming more extreme due to human activities such as the burning of fossil fuels,” said the WMO’s secretary-general, Michel Jarraud.

“We are running out of time. The laws
of physics are non-negotiable.”

“The Greenhouse Gas Bulletin shows that, far from falling, the concentration of carbon dioxide in the atmosphere actually increased last year at the fastest rate for nearly 30 years. We are running out of time. The laws of physics are non-negotiable.

“The Bulletin provides a scientific base for decision-making. We have the knowledge and we have the tools for action to try to keep temperature increases within 2°C to give our planet a chance and to give our children and grandchildren a future. Pleading ignorance can no longer be an excuse for not acting.”

Wendy Watson-Wright, executive secretary of the Intergovernmental Oceanographic Commission of UNESCO, said: “It is high time the ocean, as the primary driver of the planet’s climate and attenuator of climate change, becomes a central part of climate change discussions.

“If global warming is not a strong enough reason to cut CO2 emissions, ocean acidification should be, since its effects are already being felt and will increase for many decades to come.”

The amount of CO2 in the atmosphere reached 396.0 parts per million (ppm) in 2013. At the current rate of increase, the global annual average concentration is set to cross the symbolic 400 ppm threshold within the next two years.

More potent

Methane, in the short term, is a far more powerful greenhouse gas than CO2 − 34 times more potent over a century, but 84 times more over 20 years.

Atmospheric methane reached a new high of about 1,824 parts per billion (ppb) in 2013, because of increased emissions from human sources. Since 2007, it has started increasing again, after a temporary period of levelling-off.

Nitrous oxide’s atmospheric concentration in 2013 was about 325.9 ppb. Its impact on climate, over a century, is 298 times greater than equal emissions of CO2. It also plays an important role in the destruction of the ozone layer that protects the Earth from harmful ultraviolet solar radiation.

The oceans currently absorb a quarter of anthropogenic CO2 emissions − about 4kg of CO2 per day per person. Acidification will continue to accelerate at least until mid-century, according to projections from Earth system models. − Climate News Network

China may be ready to kick coal habit

A coal-fired power station at Yangzhou in China's central Jiangsu province Image: Vmenkov via Wikimedia Commons
A coal-fired power station at Yangzhou in China’s central Jiangsu province
Image: Vmenkov via Wikimedia Commons

By Kieran Cooke

Signs are hopeful that China, the world’s No.1 emitter of greenhouse gases, aims to become less reliant on the polluting coal that powered its rapid economic rise.

LONDON, 5 September, 2014 − There are still doubts. The statistics might be proved wrong. But it looks as if China might be starting to wean itself off its coal consumption habit.

China produces and consumes nearly as much coal as the rest of the world combined. Coal, the most polluting of all energy sources, has powered the growth of China’s flyaway economy. But as incomes have risen, so has pollution. The country is now the world’s No.1 emitter of greenhouse gases.

Latest figures indicate that change is on the way, spurred on by a much-vaunted government “war on pollution” campaign. The state-run National Development and Reform Commission reports that domestic coal output shrank over the first five months of 2014 – the first such decline since the start of China’s rapid economic expansion back in the late 1980s.

Virtual halt

Greenpeace, the environmental NGO, said in a recent analysis of China’s coal sector that growth in coal imports, which had been going up at an annual rate of between 13% and 20% in recent years, has come to a virtual halt.

Meanwhile, the official Xinhua news agency says Beijing – a city of nearly 12 million people – will ban the sale and use of coal in its six main districts by 2020.

Coal-fired factories and power plants around the Chinese capital are being shut down and replaced by natural gas facilities. Coal generated 25% of Beijing’s energy in 2012, and the aim is to bring that figure down to less than 10% by 2017. Other cities and regions are following Beijing’s lead.

Just how meaningful these cutbacks in coal use are is difficult to gauge. Air pollution – much of it caused by the burning of low-grade thermal coal − is not only a big environmental issue in China but also a political one as well.

China’s leaders have promised a population increasingly angry about the low quality of the air they breathe and the water they drink that the government is determined to tackle pollution.

Yet coal-fired power plants are still being built at a considerable pace, and many more are planned.

Some analysts argue that the present slowdown in China’s coal consumption is only temporary, the result of a dip in industrial output that will be reversed as soon as the economy roars ahead again.

Less reliant

Others say the decline in coal consumption is part of a long-term trend. As China’s economy matures, becoming less dependent on heavy industrial goods and embarking on more hi-tech and service-oriented projects, the country will become ever more energy efficient – and less reliant on coal.

China might be the world’s biggest emitter of fossil fuel emissions, but it also has fast become a global leader in hydro, wind and solar power.

No one is suggesting that coal is going to be absent from China’s energy mix anytime soon. The lung-jarring pollution of many of China’s cities is likely still to be evident for some years yet. But coal is no longer king.

That’s bad news for big coal exporters to China, particularly Australia and Indonesia. But it’s potentially good news for millions in China who crave clean air. And it’s very good news for the planet. – Climate News Network

Sun sheds light on Arctic carbon puzzle

Sun reflects through ice crystals on the Arctic Ocean Image: Mike Dunn/NOAA Climate Program via Wikimedia Commons
The sun reflects from ice crystals on the Arctic Ocean
Image: Mike Dunn/NOAA Climate Program via Wikimedia Commons

By Tim Radford

Scientists discover that, as the Arctic continues to warm, sunlight will be the major cause of CO2 escaping into the atmosphere from vegetation preserved in frozen soil.

LONDON, 4 September, 2014 − One of the puzzles of the permafrost has been solved by scientists in the US. The key to the carbon cycle in the Arctic north is not the microbe population − it’s the sunlight.

Such a discovery is not, strictly speaking, concerned with climate change, but with the more detailed question of how the world works – specifically, how the carbon that was once plant material gets back into the atmosphere.

However, since the Arctic permafrost is home to half of all the organic carbon trapped in the soils of the entire Earth, the finding is ominous.

The Arctic is one of the fastest warming regions on the planet. As it warms, more and more carbon dioxide is likely to escape from the half-decayed tundra vegetation preserved in the frozen soil and will find its way into the atmosphere, to accelerate still further warming.

For the moment, the study is another piece fitted into place in a wider understanding of the carbon cycle.

Organic carbon

Rose Cory, of the University of Michigan, US, reports with colleagues, in the journal Science, that they measured the speeds at which bacteria and sunlight converted dissolved organic carbon in the lakes and rivers of Alaska.

In the standard domestic garden compost heap, the hard work of turning such things as decaying cabbage stalks, potato peelings and grass cuttings back into carbon dioxide and methane is performed by microbes.

But visible and ultraviolet light beams also pack a punch. They too can oxidise organic carbon and turn it back into gas molecules.

In 2013, Dr Cory and colleagues established that levels of dissolved organic carbon in a region that was once permanently frozen were rising, giving microbes and other conversion processes a chance to get to work.

The researchers took samples of flowing and still water from 135 lakes and 73 rivers on Alaska’s North Slope over a three-year period, and then incubated them under differing conditions of light.

More efficient

They found that sunlight was 19 times more efficient than microbes at processing the carbon, and could account for between 70% and 95% of all the carbon released from Alaskan water.

“We’re likely to see more carbon dioxide released from thawing permafrost than people had previously believed,” Dr Cory said. “We are able to say that because we now know that sunlight plays a key role and that carbon released from thawing permafrost is readily converted to carbon dioxide once it is exposed to sunlight.”

Microbes are less efficient in low temperatures. And the sunlight works more efficiently because it can directly degrade the dissolved organic carbon, and can also convert it into a condition that makes it more accessible for the microbes.

“This is because most of the fresh water in the Arctic is shallow, meaning sunlight can reach the bottom of any river – and most lakes – so that no dissolved organic carbon is kept in the dark,” said Byron Crump, a microbial ecologist at Oregon State University, and a co-author of the report. “Also there is little shading of rivers and lakes in the Arctic because there are no trees.” – Climate News Network

Committed carbon emissions are rising fast

The Pątnów power plant in Konin, Poland Image: Flyz1 via Wikimedia Commons

The Pątnów power plant in Konin, Poland
Image: Flyz1 via Wikimedia Commons

 

 

 

 

 

 

 

 

 

By Tim Radford

As countries build ever more fossil fuel power plants, they commit the atmosphere to rapidly increasing levels of carbon dioxide – the opposite of what governments say they intend.

LONDON, 28 August 2014 – Challenging news for those climate campaigners who believe that renewable sources of energy are on the increase: they may be, but so are carbon dioxide emissions.

Steven Davis of the University of California, Irvine and Robert Socolow of Princeton University in the US report in the journal Environmental Research Letters that existing power plants will emit 300 billion tons of additional carbon dioxide into the atmosphere during their lifetimes. In this century alone, emissions have grown by 4% per year.

The two scientists have already reported on the increasing costs of delay in phasing out fossil fuel sources of energy. This time they have looked at the steady future accumulation of carbon dioxide in the atmosphere from power stations.

“We show that, despite international efforts to reduce CO2 emissions, total remaining commitments in the global power sector have not declined in a single year since 1950 and are in fact growing rapidly,” their paper says.

Massive commitment

“We are flying a plane that is missing a crucial dial on the instrument panel,” said Professor Socolow. “The needed dial would report committed emissions.

“Right now, as far as emissions are concerned, the only dial on our panel tells us about current emissions, not the emissions that capital investment will bring about in future years.”

Governments worldwide have in principle accepted that greenhouse gas emissions should be reduced and average global warming limited to a rise of 2°C.

The scientists asked: once a power station is built, how much carbon dioxide will it emit, and for how long? They assumed a functioning lifetime of 40 years for a fossil fuel plant and then did the sums.

The fossil fuel-burning stations built worldwide in 2012 alone will produce 19 bn tons of carbon dioxide over their lifetimes. The entire world production of the greenhouse gas from all the world’s working fossil fuel power stations in 2012 was 14 billion tons.

“Far from solving the problem of climate change, we’re investing heavily in technologies that make the problem worse”

The US and Europe between them account for 20% of committed emissions, but these commitments have been declining in recent years. Facilities in China and India account for 42% and 8% respectively of all committed future emissions, and these are rapidly growing in number. Two-thirds of emissions are from coal-burning stations. The share from gas-fired stations had risen to 27% by 2012.

“Bringing down carbon emissions means retiring more fossil fuel-burning facilities than we build,” Dr Davis said. “But worldwide we’ve built more coal-burning power plants in the past decade than in any previous decade, and closures of old plants aren’t keeping pace with this expansion.

“Far from solving the problem of climate change, we’re investing heavily in technologies that make the problem worse.” And Professor Socolow said: “We’ve been hiding what’s going on from ourselves. A high-carbon future is being locked in by the world’s capital investments.

“Current conventions for reporting data and presenting scenarios for future action need to give greater prominence to these investments.” – Climate News Network

Politicians ignore people’s power pleas

A community-owned solar farm in the UK Image: Neil Maw/Westmill Solar Co-operative via WEikimedia Commons
Field of dreams: a community-owned solar farm near Oxford, UK
Image: Neil Maw/Westmill Solar Co-operative via Wikimedia Commons

By Paul Brown

Consumers worldwide increasingly want renewable energy sources to provide their electricity, yet many governments are ignoring them by continuing to exploit fossil fuels.

LONDON, 26 August, 2014 − Public support for renewable energies across the world continues to grow, particularly in more advanced economies − with solar power being especially popular.

At the same time, the policies of the governments in most of these richer countries do not mirror public opinion as many continue to develop fossil fuels, which do not command such popular support.

An example is the UK, where the government wants to exploit gas reserves by the controversial method of fracking – fracturing rock to allow the gas to reach the ground surface. The Conservative government is also promising to cut down on subsidies for onshore wind farms and to build nuclear power stations.

According to the public attitudes report published this month by the British government’s Department of Energy and Climate Change, 36% of the population supports the plan to build new nuclear stations, and only 24% support shale gas extraction by fracking.

Widespread support

In contrast, 79% of the public is in favour of renewable energies to provide electricity. The UK has plentiful renewable energy and is exploiting several different types. Solar panels are the most popular form, with 82% of the public supporting their widespread use on the roofs of private houses and, more recently, solar farms in fields in the countryside.

Other high scores for renewables were offshore wind (72% in favour), onshore wind (67%), wave and tidal (73%), and biomass (60%) − even though all need public subsidy to compete with fossil fuels.

Despite the government’s public support for nuclear, there has been no start on a new station because a subsidy offered by the government is being investigated as potentially illegal under European Union competition legislation. Fracking is still at the exploratory stage and requires years of investment before any power could be produced.

Massive growth

Meanwhile, renewables keep on growing. In the first three months of this year, they produced nearly one-fifth of the UK’s electricity. Renewable energy generation was 43% higher than a year previously, showing the massive growth in the industry.

Both onshore and offshore wind farms are growing quickly, with the UK now having the largest offshore wind industry in the world.

The electricity output from renewables this year was boosted by high rainfall in Scotland, helping the country’s hydropower stations to produce more power, and windy conditions over the whole of the UK improving wind power output.

The British government’s response to these successes has been a policy to reduce the subsidies for both wind and solar power, as improving technology and mass production lower unit costs, while increasing Treasury support for nuclear power and fracking.

Germany has a similar public support for fossil-free energy – with 69% of consumers agreeing that the subsidies are needed to switch electricity generation to renewables. Unlike in Britain, all nuclear stations in Germany are being closed because of public demand, and fracking is unlikely to be considered.

This is partly because 380,000 Germans already work in the renewable energy sector and its development is credited with helping Germany through the recent recession by creating manufacturing and maintenance jobs.

Attitudes in the US to climate change and renewables have also changed in recent years, despite a barrage of propaganda from the fossil fuel industry attempting to cast doubt on the scientists’ predictions of global warming. The public supports renewable energies, irrespective of their views on global warming.

Actively concerned

The Yale Project on Climate Change Communication reports that 18% of Americans are alarmed by climate change and its effect on their country, and 33% are actively concerned. This is in contrast to 11% who are doubtful that climate change is man-made, and a very vocal 7% who believe it is a hoax or conspiracy got up by scientists and journalists.

Dr Anthony Leiserowitz, the director of the Yale project, said “Whatever people’s view on whether climate change was man-made or not, all sectors agreed that there should be support for alternative energies. Subsidies for more fuel efficient and solar had wide public support. This cut across voters of all parties and no party.”

Even in Australia, where the government has repudiated all efforts to combat climate change, 70% of the public support renewable energies.

In the developing world, public knowledge of renewable energies is less, and so is the support − although solar power is popular. In India, where power cuts are a major headache for businesses, a recent poll showed that 50% of Indians want more renewable energy, and particularly solar power, believing it will help them get a more consistent electricity supply. – Climate News Network