Category Archives: Energy

Croplands changed by climate’s ups and downs

Arid areas such as Patagonia have become wetter rather than drier Image: Rolf Hengel via Wikimedia Commons
Arid areas such as Patagonia have unexpectedly become wetter rather than drier
Image: Rolf Hengel via Wikimedia Commons

By Tim Radford

New research shows that the complex balance of gains and losses caused by climate change could mean more land being available for agriculture − but fewer harvests.

LONDON, 25 September, 2014 − With climate change, you win some, you lose some. New research shows that suitable new cropland could become available in the high latitudes as the world warms − but tropical regions may become less productive.

Florian Zabel and two fellow-geographers from Ludwig Maximilians University in Munich, Germany, report in the journal Public Library of Science One that they made judgments about the climate, soil and topography to suit the 16 most important food and energy crops. They then compared data for the period 1981-2010 with simulations of a warming world for the period 2071-2100.

The results looked good: in northern Canada, China and Russia, they found that a notional additional land area of 5.6 million sq km became available for crops.

Significant losses

Less happily, in the Mediterranean and sub-Saharan Africa there were significant losses of agricultural productivity – if no additional irrigation was factored in. Also, the chances of multiple harvests in tropical Brazil, Asia and Central Africa would be reduced.

Altogether, the land suitable for agriculture by 2100 would total 54 million sq km. But of this, 91% is already under cultivation.

“Much of the additional area is, however, at best only moderately suited to agricultural use, so the proportion of highly fertile land suited to agricultural use will decrease,” Dr Zabel says.

“In the context of current projections, which predict that the demand for food will double by the year 2050 as the result of population increase, our results are quite alarming.”

The Munich calculations were essentially mathematical projections based on climate models that are, in turn, based on broad conclusions of change. But what if those broad conclusions are too sweeping?

Climate researcher Peter Greve, of the Swiss Federal Institute of Technology (ETH) in Zurich, and colleagues report in Nature Geoscience that the rule of thumb for climate change – that wet regions will tend to get wetter, and already dry regions will in general become more arid – may not always hold.

So they looked at the calculations again, and began to search for trends towards increasing humidity or aridity.

In effect, they were trying to see if they could predict what should have happened in the past, so they chose two periods − 1948 to 1968, and 1984 to 2004 − and examined the patterns of change.

Clear trends

They could find no obvious trend towards either a wetter or a drier climate over about three-quarters of the land area under consideration. There were clear trends for the remaining quarter, but, once again, the answers were not simple. In about half of this land area, the dry-gets-drier, wet-gets-wetter rule seemed to hold. In the other half, the trends seemed to be contradictory.

In the past, parts of the Amazon, Central America, tropical Africa and Asia should have got wetter, but instead became less moist. Patagonia, central Australia and the US Midwest were all dry areas that became wetter.

The wet-gets-wetter rule held good for the eastern US, northern Australia and northern Eurasia, and the already dry Sahel, Arabian Peninsula and parts of central Asia and Australia became more parched.

The lesson is not that climate projections are wrong, but that climate systems are very complex. “Our results emphasise how we should not overly rely on simplifying principles to assess past developments in dryness and humidity,” Greve says. – Climate News Network

Investor heavyweights call for clear action on climate

Falling costs make renewables such as solar energy competitive in the US without subsidies Image: US Bureau of Land Management via Wikimedia Commons
Falling costs make renewables such as solar energy competitive in the US without subsidy
Image: US Bureau of Land Management via Wikimedia Commons

By Kieran Cooke

As a major UN climate summit gets under way in New York today, some of the world’s leading institutional investors demand clearer policies on climate change and the phasing out of fossil fuel subsidies.

LONDON, 23 September, 2014 − Many of the biggest hitters in the global financial community, together managing an eye-watering $24 trillion of investment funds, have issued a powerful warning to political leaders about the risks of failing to establish clear policy on reducing greenhouse gas emissions.

More than 340 investment concerns − ranging from Scandinavian pensions funds to institutional investors in Asia, Australia, South Africa and the US − have put their signatures to what they describe as global investors’ most comprehensive statement yet on climate change.

In particular, the investors call on government leaders to provide a “stable, reliable and economically meaningful carbon policy”, and to develop plans to phase out subsidies on fossil fuels.

They warn: “Gaps, weaknesses and delays in climate change and clean energy policies will increase the risks to our investments as a result of the physical impacts of climate change, and will increase the likelihood that more radical policy measures will be required to reduce greenhouse gas emissions.

Ambitious policies

“Stronger political leadership and more ambitious policies are needed in order for us to scale up our investments.”

Attempts to establish carbon pricing systems capable of making an impact on climate change have so far ended in failure, while oil and gas companies continue to battle against stopping fossil fuel subsidies.

The investors’ move has been welcomed by the United Nations.

Achim Steiner, head of the UN Environment Programme, said: “Investors are owners of large segments of the global economy, as well as custodians of citizens’ savings around the world. Having such a critical mass of them demand a transition to the low-carbon and green economy is exactly the signal governments need in order to move to ambitious action quickly.

“What is needed is an unprecedented re-channelling of investment from today´s economy into the low-carbon economy of tomorrow.”

The investors’ statement comes amid growing concern in the finance sector about the economic consequences of a warming world.

Last week, a commission composed of leading economists and senior political figures said the transition to a low-carbon economy was vital in order to ensure continued global economic growth.

Stranded assets

Other groups say investors who continue to put their money into fossil fuels are taking considerable risks. As governments and regulators face up to the enormity of climate change and place more restrictions on fossil fuels, such investments could become what are termed “stranded assets”.

There are also signs of a surge in low-carbon technologies, particularly in the renewable energy sector. Last week, Lazard, the asset management firm, reported that a decline in cost and increased efficiency means large wind and solar installations in the US can now, without subsidies, be cost competitive with gas-fired power.

There is also increased activity on the carbon pricing front. China, the world’s biggest emitter of greenhouse gases, recently announced it would establish a countrywide emissions trading system by 2016.

If implemented, the China carbon trading system will be the world’s biggest. The country already runs seven regional carbon trading schemes. – Climate News Network

Political will is only barrier to 100% renewables

Wind turbines in Germany's Rhein-Hunsrück district, a world leader in renewables Image: Markus Braun via Wikimedia Commons
Germany’s Rhein-Hunsrück district already exceeds100% electricity from renewables
Image: Markus Braun via Wikimedia Commons

By Paul Brown

A report published ahead of next week’s UN Climate Summit illustrates that poor and prosperous nations, tiny islands and great cities, can achieve all their energy needs from renewables.

LONDON, 20 September, 2014 − A new handbook shows how forward-looking communities around the world are already moving away from reliance on fossil fuels and generating their own power with 100% renewables − while also becoming more prosperous and creating jobs.

The report, How to Achieve 100% Renewable Energy, is being released today, ahead of the UN Climate Summit in New York next Tuesday (September 23), when the UN Secretary-general, Ban Ki-Moon, will call on world leaders to make new commitments to cut fossil fuel use.

The World Future Council, based in Hamburg, Germany, has issued the report to show that it is only lack of political will that is preventing the world switching away from fossil fuels. It believes that the leaders at the UN summit need to set ambitious targets and timetables to achieve the switch to renewables.

Technologies exist

Using case histories − from small islands in the Canaries to great commercial cities such as Frankfurt in Germany and Sydney in Australia − the report makes clear that the technologies to go 100% renewable exist already.

In many cases, the switch has the combined effect of saving money for the community concerned and creating jobs, making everyone more prosperous. In all cases, improvements in energy efficiency are essential to meeting targets.

Where the100% renewable target is adopted, it gives the clearest signal to business that investments in clean technologies will be secure. The report says: “The benefits range from savings on fossil fuel imports, improved energy, and economic security, as well as reduced energy and electricity costs for governments, local residents and businesses.”

There is no case made for nuclear power. Indeed, the report says that the uranium needed for nuclear fuel is − like coal, oil and gas − a finite resource that will soon be running out.

One of the case histories in the report is the Fukushima Prefecture in Japan. In March 2011,  it sustained the world’s worst nuclear accident since the 1986 Chernobyl disaster in Ukraine, and has now opted to go for 100% electricity from renewables by 2040.

Some of the 100% renewable targets detailed in the report are just for electricity production. The authors − Toby Couture, founder of the Berlin-based energy consultancy E3 Analytics, and Anna Leidreiter, climate and energy policy officer at the World Future Council − point out that heating and cooling, and particularly transport, without fossil fuels is far more challenging, but still equally possible. Some countries are already committed to it.

Denmark, a pioneer in the field, has a target of achieving all its electricity and heating needs from renewables by 2035, and all energy sectors − including transport − by 2050. This includes an expansion of wind and solar power, biogas, ground source heat pumps, and wood-based biomass. Because of its investments, the country expects to have saved €920 million on energy costs by 2020.

At the opposite end of the scale, El Hierro, a small island in the Canaries, has a 100% energy strategy, using a wind farm and a volcanic crater. When excess electricity is produced by the wind farm, water is pumped into the volcanic crater, which acts as a storage lake for a hydroelectric plant. This supplements the island’s electricity supply when the wind drops or when demand is very high.

A future component of El Hierro’s strategy is to replace the island’s entire stock of 4,500 cars with electric vehicles, so cutting the need to import fuel.

Surplus electricity

Some places have already exceeded 100% electricity from renewables. The Rhein-Hunsruck district west of Frankfurt, Germany, managed this in 2012, and expects by the end of this year to be producing 230% of its needs, exporting the surplus to neighbouring areas through the national grid. It hopes to use the surplus in future for local transportation, hydrogen or methane production.

There are many other examples in the report, including from San Francisco in the US, Cape Verde island in West Africa, Bangladesh, Costa Rica, and Tuvalu island in the Pacific. These show that both rich and poor communities can share the benefits of the renewable revolution – and, in the case of the 3 billion people still without electric power in the world, bypass the need for fossil fuels altogether.

Jeremy Leggett, a pioneer of solar power and author of a foreword to the report, says: “We are on the verge of a profound and urgently necessary shift in the way we produce and use energy.

“This shift will move the world away from the consumption of fossil resources towards cleaner, renewable forms of power. Renewable energy technologies are blowing the whistle on oil dependency and will spark an economic and social renaissance.

“The question is: Do we make this transition from fossil resources to renewables on our own terms, in ways that maximise the benefits to us today and to future generations, or do we turn our heads away and suffer the economic and social shocks that rising prices and market volatility will create?” – Climate News Network

Climate action and economies can grow together

Investing in renewables such as solar energy can spur economic activity Image: Alex Snyder/Wayne National Forest via Wikimedia Commons
Working together: investing in renewables such as solar energy can spur economic activity
Image: Alex Snyder/Wayne National Forest via Wikimedia Commons

By Kieran Cooke

A new global commission report by major political and business figures refutes the claim that economic expansion and tackling climate change can’t both be achieved at the same time.

LONDON, 17 September, 2014 − We can have our cake and eat it. That’s the main message of a new study that says the idea that we have to choose between battling against climate change or promoting growth in the world’s economy is a “false dilemma”.

The report, The New Climate Economy, was produced by the Global Commission on the Economy and Climate, chaired by Felipe Calderón, the former president of Mexico, and including eminent economist Lord [Nicholas] Stern.

Calderon, addressing what he describes as a “false dilemma”, says: “The message to leaders is clear. We don’t have to choose between economic growth and a safe climate. We can have both.”

Lord Stern, author of the 2006 Stern Review, which comprehensively detailed, for the first time, the economic consequences of not taking action on climate change, says decisions being made now will determine the future of both the economy and the climate.

High-quality growth

“If we choose low-carbon investment, we can generate strong, high-quality growth – not just in the future, but now,” he says. “But if we continue down the high-carbon route, climate change will bring severe risks to long-term prosperity.”

The commission’s report, released at the United Nations in New York shortly before a major UN climate summit, says there are now big opportunities for achieving strong economic growth and, at the same time, lowering emissions across three sectors:

  • Building more compact, better connected cities will improve the quality of life of urban dwellers, improve economic performance, and lower emissions.
  • Improved land use can cut emissions resulting from deforestation. Restoring 12% of the world’s degraded land would dramatically raise farmers’ incomes.
  • More and more of the world’s energy is likely to be generated by renewables, cutting dependence on highly-polluting coal. Renewables is now a big growth industry, spurring on various economic activities.

The report says that about US$90 trillion is likely to be invested in infrastructure in the world’s cities, agriculture and energy systems over the next 15 years, and spending should be directed towards low-carbon growth that would not only benefit the climate but also business productivity.

The study calls for the phasing out of huge amounts spent worldwide on subsidies for fossil fuels – currently US$600 billion, compared with US$100bn for renewable, the report says. Competitive energy markets, consistent government policy, a strong price for carbon, and greatly expanded research in low carbon technologies are also needed.

If fully implemented, the report’s authors calculate, a reduction of up to 90% in emissions could be achieved by 2030, and dangerous climate change would be averted.

Meaningful action

Although the report’s findings have been endorsed by a wide range of leading politicians, business figures and economists, there are those who would argue against the idea that economic growth can be achieved alongside meaningful action on climate change.

For example, the New Economics Foundation (NEF), a UK thinktank, contends that indefinite global economic growth is unsustainable.

In a 2010 report, Growth Isn’t Possible, the NEF said economic growth is constrained by the finite nature of the planet’s natural resources. “Growth forever, as conventionally defined, within fixed though flexible limits, is not possible,” it said. “Sooner or later, we will hit the biosphere’s buffers.”

Others would point out that although a carbon market has been in operation for several years, the price of carbon has failed to rise. The introduction of market forces and competition in the energy sector in many countries has done little to lessen greenhouse gas emissions.

In many countries, including India, China, Australia and some states in Europe, a central role in driving economic growth is still played by coal, the most polluting of all energy sources. – Climate News Network

Fracking fuels conflict over water resources

A wind farm in Nova Scotia, Canada, where a fracking ban favours renewable energy Image: Dennis Jarvis via Wikimedia Commons
A wind farm in Nova Scotia, Canada, where a fracking ban favours renewable energy
Image: Dennis Jarvis via Wikimedia Commons

By Paul Brown

Limited water supplies near the richest oil and gas reserves accessible through fracking threaten to create tensions that could block future projects using the controversial extraction process.

LONDON, 15 September, 2014 − The vast quantities of water needed to release oil and gas by fracturing rock formations are not available in large areas with the richest deposits – posing major challenges to the future viability of fracking.

According to a report by the World Resources Institute (WRI), 38% of the areas where shale gas and oil is most abundant is arid or already under severe water stress – and the 386 million people living in these areas need all the spare water they can get.

Among the countries that have areas with potentially large quantities of shale underground, but which have limited water supplies, are China, India, Pakistan, South Africa, Mexico, the US and the UK.

Andrew Steer, president of the WRI, said: “These factors pose significant social, environmental, and financial challenges to accessing water, and could limit shale development.”

Stumbling block

The report says that estimates of shale gas reserves add 47% to the global, technically-recoverable natural gas reserves and 11% to the oil reserves. But it points out that that “as countries escalate their shale exploration, limited availability of fresh water could become a stumbling block”.

The method of releasing the trapped gas and oil in the process known as fracking is controversial because it involves injecting large quantities of water and chemicals underground to fracture the rock and release the oil and gas.

In some areas of the US, where fracking has been pioneered and has enabled large new supplies of oil and gas to be produced to the benefit of the economy, there has been trouble with the release of methane into the atmosphere and contamination of water supplies.

In many areas that have potential for fracking, this had led to a public backlash − even where there is plenty of potential water for use in the process.

An example is the Canadian province of Nova Scotia, where the Environment Minister, Andrew Younger, has imposed an indefinite ban on fracking onshore and plans to bring forward legislation to ban the practice.

“Nova Scotians have clearly indicated they are not yet ready for the use of hydraulic fracturing in the development of shale reserves,” Younger said. “We will respect their views.”

Areas of stress

The WRI has produced a detailed map of shale oil and gas reserves, overlaid with colours indicating of areas high water stress. It illustrates where most conflict over the use of resources is likely to be.

The report comments on the problems facing companies and governments in persuading their citizens to sacrifice limited water supplies so that oil and gas can be extracted.

“The findings indicate that companies developing shale resources internationally are likely to face serious challenges to accessing fresh water in many parts of the world,” the report says.

“These challenges highlight a strong business case for strategic company engagement in sustainable water management at local and regional levels.

“They also point to a need for companies to work with governments and other sectors to minimise environmental impacts and water resources depletion.” – Climate News Network

Drowned tropical forests add to climate change

Dead trees poke out of the Nam Theun 2 dam reservoir, Laos. Image: Dominique Serça/CNRS
Dead trees poke eerily out of the Nam Theun 2 dam reservoir in Laos
Image: Dominique Serça/CNRS

By Paul Brown

New scientific data supports the belief that methane emissions from big hydroelectric dams in the tropics outweigh the benefits that this form of renewable energy provides.

LONDON, 11 September, 2014 − Big dams built in the tropics to produce hydroelectricity have long been highly controversial − and data gathered in Laos by a French team studying methane emissions confirms that dams can add to global warming, not reduce it.

In many rocky regions low on vegetation and population, such as in Iceland and other northern mountainous regions, the production of electricity from hydropower is clearly a net gain in the battle against climate change.

In Asia, Africa and South America, however, masses of methane are produced from dams by the drowning of tropical forests in them. As long ago as 2007, researchers at Brazil’s National Institute for Space Research calculated that the world’s largest dams emitted 104 million tonnes of methane annually and were responsible for 4% of the human contribution to climate change.

Short-term threat

Since methane has an impact 84 times higher over 20 years than the same quantity of carbon dioxide, this is a serious short-term threat to pushing the planet towards the danger threshold of increasing temperatures by 2˚C .

Despite the warnings that big dams in the tropics might be adding to climate change, governments go on building them − while often claiming that large dams equal clean energy.

The new research shows that the methane discharges are probably even worse than current calculations.

In an attempt to find out exactly what the perils and benefits of big dams in the tropics can be, a French team from the National Centre for Scientific Research (CNRS) has been studying the Nam Theun 2 reservoir in Laos − the largest in Southeast Asia − prior to its filling, in May 2008, right up to the present to calculate the total methane emissions.

Methane is produced by bacteria feeding on the plant material drowned when the dam is filled. This is added to by more organic matter that is washed into it by rivers and rains.

Measuring the methane produced is the tricky bit as it reaches the atmosphere in three ways. Some is dissolved in the water and reaches the atmosphere by diffusion, some goes through the turbines and is released downstream, and the third way is called ebullition – which means bubbles of methane coming directly to the surface and going straight into the atmosphere.

It is these last gas emissions that have been so hard to measure, but the team has developed automatic measuring devices that work 24 hours a day.

The measurements carried out on the Nam Theun 2 reservoir enabled the scientists to show that ebullition accounted for between 60% and 80% of total emissions from the reservoir in the first years following filling.

Maximum emissions

In addition, ebullition intensity varies at night and seasonally. During the four months of the hot dry season (mid-February to mid-June), emissions reach their maximum because water levels are low. Daily variations are controlled by atmospheric pressure: during the two daily pressure drops (in the middle of the day and the middle of the night), methane (CH4) ebullition increases.

With the help of a statistical model, day-to-day data related to atmospheric pressure and water level was used by the researchers to reconstruct emissions by ebullition over a continuous four-year period (2009-2013).

The results obtained highlight the importance of very frequent measurements of methane fluxes. They also show that the ebullition process − and therefore the amount of methane emitted from tropical reservoirs during their first years of operation − has most certainly been underestimated until now.

For the researchers, the next stage will be to quantify diffusion at the surface of the reservoir and emissions downstream from the dam to the same level of accuracy. This will enable them to complete the assessment of methane emissions from this reservoir, and better assess the contribution they make to the global greenhouse effect. – Climate News Network

China may be ready to kick coal habit

A coal-fired power station at Yangzhou in China's central Jiangsu province Image: Vmenkov via Wikimedia Commons
A coal-fired power station at Yangzhou in China’s central Jiangsu province
Image: Vmenkov via Wikimedia Commons

By Kieran Cooke

Signs are hopeful that China, the world’s No.1 emitter of greenhouse gases, aims to become less reliant on the polluting coal that powered its rapid economic rise.

LONDON, 5 September, 2014 − There are still doubts. The statistics might be proved wrong. But it looks as if China might be starting to wean itself off its coal consumption habit.

China produces and consumes nearly as much coal as the rest of the world combined. Coal, the most polluting of all energy sources, has powered the growth of China’s flyaway economy. But as incomes have risen, so has pollution. The country is now the world’s No.1 emitter of greenhouse gases.

Latest figures indicate that change is on the way, spurred on by a much-vaunted government “war on pollution” campaign. The state-run National Development and Reform Commission reports that domestic coal output shrank over the first five months of 2014 – the first such decline since the start of China’s rapid economic expansion back in the late 1980s.

Virtual halt

Greenpeace, the environmental NGO, said in a recent analysis of China’s coal sector that growth in coal imports, which had been going up at an annual rate of between 13% and 20% in recent years, has come to a virtual halt.

Meanwhile, the official Xinhua news agency says Beijing – a city of nearly 12 million people – will ban the sale and use of coal in its six main districts by 2020.

Coal-fired factories and power plants around the Chinese capital are being shut down and replaced by natural gas facilities. Coal generated 25% of Beijing’s energy in 2012, and the aim is to bring that figure down to less than 10% by 2017. Other cities and regions are following Beijing’s lead.

Just how meaningful these cutbacks in coal use are is difficult to gauge. Air pollution – much of it caused by the burning of low-grade thermal coal − is not only a big environmental issue in China but also a political one as well.

China’s leaders have promised a population increasingly angry about the low quality of the air they breathe and the water they drink that the government is determined to tackle pollution.

Yet coal-fired power plants are still being built at a considerable pace, and many more are planned.

Some analysts argue that the present slowdown in China’s coal consumption is only temporary, the result of a dip in industrial output that will be reversed as soon as the economy roars ahead again.

Less reliant

Others say the decline in coal consumption is part of a long-term trend. As China’s economy matures, becoming less dependent on heavy industrial goods and embarking on more hi-tech and service-oriented projects, the country will become ever more energy efficient – and less reliant on coal.

China might be the world’s biggest emitter of fossil fuel emissions, but it also has fast become a global leader in hydro, wind and solar power.

No one is suggesting that coal is going to be absent from China’s energy mix anytime soon. The lung-jarring pollution of many of China’s cities is likely still to be evident for some years yet. But coal is no longer king.

That’s bad news for big coal exporters to China, particularly Australia and Indonesia. But it’s potentially good news for millions in China who crave clean air. And it’s very good news for the planet. – Climate News Network

Plan to make renewables cheaper than coal within 10 years

 

Solar power in India: Could renewables answer the world's energy needs? Image: Bkwcreator via Wikimedia Commons

Solar power in India: Could renewables answer the world’s energy needs?
Image: Bkwcreator via Wikimedia Commons

By Alex Kirby

Three weeks before the UN Secretary-General’s extraordinary meeting of world leaders in New York to tackle climate change, a leading British scientist unveils plans for a global low-carbon fund on a par with the Apollo Moon programme.

LONDON, 2 September 2014 – There are prospects of significant progress in the response of world governments to climate change, according to a former UK Government chief scientist, Sir David King.

“There are signs that a leadership role is beginning to emerge”, he told a conference in London held by the Green Economy Coalition.

Sir David also announced that he and a colleague are working with governments to raise funds to help all countries, including developing countries,  to switch to renewable energy. Their scheme hopes to raise nearly as much as the cost of the Apollo programme, NASA’s moon-landing project.

“President Obama is getting ready to commit the US to action, and last week the Chinese Prime Minister, Li Kichiang, announced that his country’s emissions had fallen by 5% in a year”, he said.

“The US and China are positioning themselves for an agreement. And that’s not all. The first speech by the new leader of India, Narendra Modi, spoke of his determination ‘to solarise’ the economy.

Ice in retreat

“Brazil’s emissions, including from deforestation, have fallen from 16.5 tonnes per person to 6.5 tonnes since 2005. Across the Andes in Peru, where the UN climate convention negotiations will take place in December, they know well enough about climate change.

“From Lima they can see the ice retreating up the mountains. At its lowest point it is now 1,000 metres above where it reached to 30 years ago..”

Sir David praised the UK’s commitment to cut greenhouse emissions by 80% by 2050, compared with their 1990 levels. He said the target – matched by Mexico – was likely to be met. The biggest climate challenge confronting the UK, he said, was from rising sea levels.

Some critics say, despite this, that the UK Government is dragging its feet, especially on supporting renewable energy. With a colleague, the economist Professor Lord Richard Layard, Sir David is working on a scheme to raise money to address this.

“It’s called the Global Apollo Programme”, he explained. “We are urging all governments to form a Commission to spend 0.02% of their GDP, which should raise US$10-20 bn p a over 10 years,  to fund RD&D for low-carbon technology.

“We are encouraging governments to launch the Programme at the UN during Ban Ki-moon’s Climate Summit on 23 September. The objective is that by 2020 renewable power should be cheaper than coal in all sunny parts of the world, and by 2025 in all parts of the world.”

Sir David, who for seven years was the UK Government’s chief scientist, is now its Foreign Secretary’s special representative for climate change. Asked if he were hopeful about progress to tackle climate change, he replied: “I’m in this job because I’m an optimist.”

Global reach

His hopes were echoed by another speaker, Hunter Lovins, president of the Colorado-based Natural Capitalism Solutions.  She told the Climate News Network: “We can do it. But it’s going to be tough. So will we do it?

“I don’t agree with the exponents of the idea of near-term human extinction (NTHE), who say we face total collapse by around 2030 or 2035.

‘”What we need is to find incentives for business, to get big countries behind solar+, the idea David King is working on – combining renewables and efficiency, with back-up where it’s needed.”

Professor Lovins told the conference: “Business-as-usual is going to get really ugly. What’s the narrative we can produce to compete with neo-liberalism?” – Climate News Network

Waste could fertilise food cost cuts

Waste not, want not: a maize anaerobic digester Image: Alex Marshall/Clarke Energy Ltd via Wikimedia Commons
Waste not, want not: a maize anaerobic digester on a farm in the UK
Image: Alex Marshall/Clarke Energy Ltd via Wikimedia Commons

By Alex Kirby

Scientists are developing a way to squeeze the last vestiges of value from renewable energy processes by combining their waste products to produce eco-friendly fertilisers that could help slow food price rises.

LONDON, 30 August 2014 − Researchers in the UK think they may have found a way to produce fertilisers that should cut farmers’ costs and at the same time boost some types of renewable energy.

Their scheme, which involves using waste material from anaerobic digesters and ash from burnt biomass, would also cut fossil fuel use and save natural resources.

The team, based at the Environment Centre at the University of Lancaster, says their fertiliser would help to slow the rise in food prices. And they believe it would work worldwide.

The three-year project has received more than £850,000 (US$1.4 m) in funding from the UK’s Natural Environment Research Council. Research, due to start this year, will take place in labs at the university and in field trials.

The project, which includes several partners working with the university, aims to produce a sustainable, environmentally-friendlier source of soil conditioner and crop fertiliser.

Potential

It builds on research originally conducted by one of the partners, Stopford Energy and Environment Ltd consultancy, which investigated using a mixture of digestates − the waste left over after material has been through an anaerobic digester − and ash, from burnt biomass, as an alternative to existing fertilisers.

Most fertilisers now in use, such as phosphorous-based and nitrate-based products, are made using energy-intensive methods that involve the consumption of oil and gas.

Phosphate-based fertiliser relies as well on the mining of phosphate, a finite and unsustainable resource, and on a production process using various toxic chemicals.

There are already projects in several countries − including the UK − that use waste from digesters to make fertiliser.

But Professor Kirk Semple, of the Lancaster Environment Centre, who leads the project, said: “It is the mixing of anaerobic digestate with biomass ash that is important. . . This would reduce pressure on natural resources and develop a new market for problematic by-products of the bio-energy industry.

“Although the project is based here in the UK, we believe there is exciting potential to produce a sustainable alternative to existing fertiliser use across the globe.”

Nutrients

A successful digestate-ash fertiliser would reduce costs and provide additional income to biomass and anaerobic digestion operators. The Lancaster team says this could make these forms of renewable energy − which could meet more than 15% of UK energy demand by 2020 − more appealing to investors, as at the moment ash has to be expensively dumped in landfills.

They say it could help to improve food security and reduce costs to farmers as production of the new fertiliser would not be linked to the global price of oil and gas.

Previous studies by Stopford show that biomass ash and digestate can be useful nutrient sources for crops in conditions which lack them.

Professor Semple told the Climate News Network that he and his colleagues were working to ensure that the new fertiliser was entirely safe. He said: “Part of the grant will be used to chemically analyse the materials, individually and together, for metals and potentially other chemicals.”

He says commercial-scale production of a successful digestate-ash fertiliser “is some way off”. But he adds: “This project offers the first detailed interrogation of this type of soil amendment. If successful, we would then look to develop this for the commercial sector.” − Climate News Network

Politicians ignore people’s power pleas

A community-owned solar farm in the UK Image: Neil Maw/Westmill Solar Co-operative via WEikimedia Commons
Field of dreams: a community-owned solar farm near Oxford, UK
Image: Neil Maw/Westmill Solar Co-operative via Wikimedia Commons

By Paul Brown

Consumers worldwide increasingly want renewable energy sources to provide their electricity, yet many governments are ignoring them by continuing to exploit fossil fuels.

LONDON, 26 August, 2014 − Public support for renewable energies across the world continues to grow, particularly in more advanced economies − with solar power being especially popular.

At the same time, the policies of the governments in most of these richer countries do not mirror public opinion as many continue to develop fossil fuels, which do not command such popular support.

An example is the UK, where the government wants to exploit gas reserves by the controversial method of fracking – fracturing rock to allow the gas to reach the ground surface. The Conservative government is also promising to cut down on subsidies for onshore wind farms and to build nuclear power stations.

According to the public attitudes report published this month by the British government’s Department of Energy and Climate Change, 36% of the population supports the plan to build new nuclear stations, and only 24% support shale gas extraction by fracking.

Widespread support

In contrast, 79% of the public is in favour of renewable energies to provide electricity. The UK has plentiful renewable energy and is exploiting several different types. Solar panels are the most popular form, with 82% of the public supporting their widespread use on the roofs of private houses and, more recently, solar farms in fields in the countryside.

Other high scores for renewables were offshore wind (72% in favour), onshore wind (67%), wave and tidal (73%), and biomass (60%) − even though all need public subsidy to compete with fossil fuels.

Despite the government’s public support for nuclear, there has been no start on a new station because a subsidy offered by the government is being investigated as potentially illegal under European Union competition legislation. Fracking is still at the exploratory stage and requires years of investment before any power could be produced.

Massive growth

Meanwhile, renewables keep on growing. In the first three months of this year, they produced nearly one-fifth of the UK’s electricity. Renewable energy generation was 43% higher than a year previously, showing the massive growth in the industry.

Both onshore and offshore wind farms are growing quickly, with the UK now having the largest offshore wind industry in the world.

The electricity output from renewables this year was boosted by high rainfall in Scotland, helping the country’s hydropower stations to produce more power, and windy conditions over the whole of the UK improving wind power output.

The British government’s response to these successes has been a policy to reduce the subsidies for both wind and solar power, as improving technology and mass production lower unit costs, while increasing Treasury support for nuclear power and fracking.

Germany has a similar public support for fossil-free energy – with 69% of consumers agreeing that the subsidies are needed to switch electricity generation to renewables. Unlike in Britain, all nuclear stations in Germany are being closed because of public demand, and fracking is unlikely to be considered.

This is partly because 380,000 Germans already work in the renewable energy sector and its development is credited with helping Germany through the recent recession by creating manufacturing and maintenance jobs.

Attitudes in the US to climate change and renewables have also changed in recent years, despite a barrage of propaganda from the fossil fuel industry attempting to cast doubt on the scientists’ predictions of global warming. The public supports renewable energies, irrespective of their views on global warming.

Actively concerned

The Yale Project on Climate Change Communication reports that 18% of Americans are alarmed by climate change and its effect on their country, and 33% are actively concerned. This is in contrast to 11% who are doubtful that climate change is man-made, and a very vocal 7% who believe it is a hoax or conspiracy got up by scientists and journalists.

Dr Anthony Leiserowitz, the director of the Yale project, said “Whatever people’s view on whether climate change was man-made or not, all sectors agreed that there should be support for alternative energies. Subsidies for more fuel efficient and solar had wide public support. This cut across voters of all parties and no party.”

Even in Australia, where the government has repudiated all efforts to combat climate change, 70% of the public support renewable energies.

In the developing world, public knowledge of renewable energies is less, and so is the support − although solar power is popular. In India, where power cuts are a major headache for businesses, a recent poll showed that 50% of Indians want more renewable energy, and particularly solar power, believing it will help them get a more consistent electricity supply. – Climate News Network