Category Archives: Ocean Warming

Ice loss sends Alaskan temperatures soaring

Scientists studying Arctic sea ice and melt ponds on the Chuckchi Sea Image: NASA/Kathryn Hansen
Melting point: researchers study Arctic sea ice and melt ponds on the Chuckchi Sea
Image: NASA/Kathryn Hansen via Wikimedia Commons

By Alex Kirby

Scientists analysing more than three decades of weather data for the northern Alaska outpost of Barrow have linked an astonishing 7°C temperature rise to the decline in Arctic sea ice.

LONDON, 17 October, 2014 − If you doubt that parts of the planet really are warming, talk to residents of Barrow, the Alaskan town that is the most northerly settlement in the US.

In the last 34 years, the average October temperature in Barrow has risen by more than 7°C − an increase that, on its own, makes a mockery of international efforts to prevent global temperatures from rising more than 2°C above their pre-industrial level.

A study by scientists at the University of Alaska Fairbanks analysed several decades of weather information. These show that temperature trends are closely linked to sea ice concentrations, which have been recorded since 1979, when accurate satellite measurements began.

The study, published in the Open Atmospheric Science Journal, traces what has happened to average annual and monthly temperatures in Barrow from 1979 to 2012.

Most striking

In that period, the average annual temperature rose by 2.7°C. But the November increase was far higher − more than six degrees. And October was the most striking of all, with the month’s average temperature 7.2°C higher in 2012 than in 1979.

Gerd Wendler, the lead author of the study and a professor emeritus at the university’s International Arctic Research Center, said he was “astonished”. He told the Alaska Dispatch News: “I think I have never, anywhere, seen such a large increase in temperature over such a short period.”

The study shows that October is the month when sea ice loss in the Beaufort and Chukchi Seas, which border northern Alaska, has been highest. The authors say these falling ice levels over the Arctic Ocean after the maximum annual melt are the reason for the temperature rise. “You cannot explain it by anything else,” Wendler said.

They have ruled out the effects of sunlight because, by October, the sun is low in the sky over Barrow and, by late November, does not appear above the horizon.

Instead, they say, the north wind picks up stored heat from water that is no longer ice-covered in late autumn and releases it into the atmosphere.

At first sight, the team’s findings are remarkable, as Barrow’s 7.2°C rise in 34 years compares with a global average temperature increase over the past century of up to about 0.8°C. But what’s happening may be a little more complex.

Warming faster

The fact that temperatures in and around Barrow are rising fast is no surprise, as the Arctic itself is known to be warming faster than most of the rest of the world.

The Intergovernmental Panel on Climate Change says observed warming in parts of northern Alaska was up to 3°C from the early 1980s to the mid-2000s. It also concludes that about two-thirds of the last century’s global temperature increase has occurred since 1980.

But Barrow’s long-term temperature rise has not been uniform, the Fairbanks study says. Its analysis of weather records between 1921 and 2012 shows a much more modest average annual rise, of 1.51°C. In 2014, the city experienced the coolest summer day recorded − 14.5°C.

So one conclusion is to remember just how complex a system the climate is − and how even 34 years may be too short a time to allow for any certainty. − Climate News Network

Oceans’ greater heat explains warming ‘pause’

An array of Argo floats ready for deployment to gather oceanic data Image: CSIRO via Wikimedia Commons

An array of Argo floats ready for deployment to gather oceanic data
Image: CSIRO via Wikimedia Commons

By Alex Kirby

New technology is helping scientists to re-assess how much heat is being absorbed by the world’s oceans – much more in some regions than realised, they say.

LONDON, 7 October 2014 – One of the most hotly-argued questions in climate research – whether global warming has slowed or even stopped – appears to have been definitively answered. And the scientists’ conclusion is unambiguous: the Earth continues to warm at a dangerous pace.

All that’s happening, they say, is that the extra heat being produced – mainly by the burning of fossil fuels – is concentrating not in the skies but in the seas. They have found new evidence that backs them up.

Instead of driving up the temperature of the atmosphere quite as fast as predicted, the evidence shows that the heat from greenhouse gas emissions is warming the oceans much more rapidly than had been realised.

In some regions the water appears to have been warming, for over 40 years, more than twice as quickly as thought, for instance in the upper 2,300 feet (700 metres) of the southern hemisphere’s oceans.

Paul Durack from the Lawrence Livermore National Laboratory in California and colleagues compared direct and inferred sea temperature measurements with the results of climate models. Together the three sets of measurements suggest estimates of northern hemisphere ocean warming are about right.

Serious under-estimate

But the team report in Nature Climate Change their estimate that warming in the southern seas since 1970 could be far higher than scientists have been able to deduce from the limited direct measurements from this under-researched region. Globally, they conclude the oceans are absorbing between 24 and 58% more energy than thought.

The researchers were able to use data from satellites and from a new source – Argo floats, a fleet of more than 3,000 free-floating monitors which drift through the water and measure the temperature and salinity of the upper 6,500 feet (2,000 m) of the ocean.

A year ago, the Intergovernmental Panel on Climate Change published its Fifth Assessment Report. Professor Chris Rapley, a former director of both the British Antarctic Survey and  the Science Museum in London, told the Climate News Network then of his alarm at what the IPCC said about the oceans.

He said the Earth’s energy imbalance, and evidence that the 93% of the energy build-up absorbed by the oceans continued to accumulate, meant the slow-down in the rise of surface temperatures appeared “a minor and temporary fluctuation”.

Speaking of the latest research, Profesor Rapley told the Network: “The newly reported results of a combination of satellite altimetry measurements of globally mapped sea level rise combined with ocean heat modelling, and a further analysis of the in situ measurements from the Argo buoys, add to the evidence that the so-called ‘pause’ in global warming is confined to surface temperature data, whilst the planet’s energy imbalance continues unabated.

Cold depths

“Once more we need to assess our appetite for risk, and consider seriously what measures we should take to minimise the threats to food and water supplies, the impacts of extreme weather, and the consequences of these to the world economic system and human wellbeing.”

A second study, also published in Nature Climate Change, by scientists at NASA’s Jet Propulsion Laboratory in Pasadena, California, concluded tentatively that all ocean warming from 2005 to 2013 had occurred above depths of 6,500 feet, and that it was not possible to detect any contribution by the deep oceans to sea level rise or energy absorption.

Josh Willis, a co-author of this study (which like that by Dr Durack and his colleagues results from the work of NASA’s newly-formed Sea Level Change Team)  said the findings did not throw suspicion on climate change itself. He said: “The sea level is still rising. We’re just trying to understand the nitty-gritty details.”

This study therefore leaves several questions still unanswered. Will more research find evidence that deep water is in fact warming, for instance? Why are the oceans now apparently absorbing more heat than they once did? And if the southern oceans are heating up faster, then may that help to speed up Antarctic ice melt?

One urgent question that needs answering is how much longer the water near the surface can continue to absorb the extra heat which human activities are producing. Another is what will happen when the oceans no longer absorb heat but start to release it. The answers could be disturbing. – Climate News Network

Surfers fear climate will wipe out big waves

Breaking up: surfers may have to settle for smaller waves in future Image:  Brocken Inaglory via Wikimedia Commons
Breaking up: surfers may have to settle for riding much smaller waves in future
Image: Brocken Inaglory via Wikimedia Commons

By Kieran Cooke

Dedicated surfers, deeply involved with monitoring the natural coastal environment around the world, warn that climate change now poses a major threat to this booming leisure industry.

LONDON, 5 October, 2014 − The world’s oceans are alive with surfers enjoying one of the fastest growing leisure activities. It is estimated there are now at least 35 million people around the globe who regularly ride the waves, and many thousands of people are employed in what has grown into a multi-billion dollar industry.

A warming world should be good news for all those artists of the waves. Warming oceans mean more storms, and the theory goes that more storms will lead to ever bigger waves. So why then are surfing websites – the internet is waterlogged with them – full of concern about changes in the climate?

Two studies appearing in the journal Nature Climate Change have made surfers stand up on their boards and reconsider the situation.

A study led by Dr Andrew Dowdy, a researcher at the Centre for Australian Weather and Climate Research (CAWCR) predicts that rising temperatures will in fact reduce the number of storms causing big waves by the end of the century on the central east coast of Australia.

Potentially destructive

The storms that do occur could be more intense and potentially destructive – but the consistency of wave patterns will be reduced.

That’s bad news for surfers of the future in that area – one of the world’s surfing hotspots. They’ll just have to move elsewhere. Dowdy told the Climate News Network that his projections only relate to that particular region, and they are not necessarily applicable to other coastal regions.

But another study, led by Mark Hemer, a senior research scientist at CAWCR, indicates that surfers might be having to ride smaller waves in future in other parts of the world as well.

Using ocean modelling techniques, Hemer and his colleagues predict a decrease in annual wave height over more than 25% of the global ocean area by the end of the century. The North Atlantic is likely to see a decrease in wave heights during all seasons, and waves are likely to be smaller in the winter months in the North Pacific and Indian Ocean.

But all is not lost. The study predicts that some regions − including  the waters off the south coast of Australia and New Zealand − will see bigger waves of between 5% and 10% above present size averages during winter months.

Surfers are worried about other climate change related threats to their activities. There are fears that rising sea levels could threaten key surfing areas.

Surfers regularly monitor water conditions – everything from acidity levels to rubbish content and sewage levels in the seas.

Surf zone

The Save the Waves Coalition − a US-based group that lobbies to protect the coastal environment, with a particular focus on what it calls the surf zone − monitors development activities in surfing areas worldwide.

Its “endangered waves” campaign lists projects that threaten key surfing areas – from plans to construct a nuclear power station on the coast of South Africa to a series of coal-fired power plants proposed for the coast of Chile.

And Climate change is seen as a major challenge facing the surfing industry.

“The unfortunate truth is that the threats to surfing habitat are now growing exponentially due to the impacts of man-made climate change,” says the California-based Sustainable Surf organisation. – Climate News Network

Hungry invader fish stripping Mediterranean bare

Tropical rabbitfish have devastated algal forests in the eastern Mediterranean Sea Image: Zafer Kizilkaya
Tropical rabbitfish have devastated algal forests in the eastern Mediterranean Sea
Image: Zafer Kizilkaya

By Tim Radford

Warming seas are extending the range of tropical rabbitfish, whose voracious appetite for seaweed and other marine vegetation is turning areas of the Mediterranean Sea into rocky barrens.

LONDON, 3 October, 2014 − Scientists in Australia, Europe and the US have identified a new menace in the Mediterranean. The tropical rabbitfish has arrived in the eastern Mediterranean Sea and − wherever the waters are warm enough −  threatens to do to the marine vegetation what the terrestrial rabbit did to Australia’s tender grasses: eat the lot.

A team of researchers led by Adriana Vergés, a marine ecologist at the University of New South Wales in Sydney, Australia, and Fiona Tomas, assistant professor at the Mediterranean Institute for Advanced Studies in Mallorca, Spain, report in the Journal of Ecology that they surveyed 1,000 kilometres of coastline around Turkey and Greece.

Dominant species

They found that two species of rabbitfish have become dominant in the region, and they think the invader is likely to claim more territory as the world’s climate changes and the waters warm.

The range expansion of the rabbitfish, which first entered the Mediterranean basin from the Red Sea via the Suez Canal, provides a good example of how tropical herbivorous fish can impact on the structure of rocky bottoms in temperate seas.

“The study identified two clearly distinct areas −  warmer regions with abundant rabbitfish, and colder regions where they are rare or absent,” Dr Vergés said.

”The regions with abundant rabbitfish had become rocky barrens. There was a 65% reduction in large seaweeds, a 60% reduction in other algae and invertebrates, and a 40% reduction in the overall number of species present.”

The hungry herbivores were first reported in the eastern Mediterranean in 1927, and have recently been found off the coast of Croatia and even the south of France.

The invaders are a threat to ecosystems because seaweed forests − like terrestrial forests − provide food and shelter for hundreds of species.

Feeding behaviour

The researchers recorded fish feeding behaviour and noted that the rabbitfish were not noticeably more greedy than the natives. But whereas the native temperate herbivores grazed only on adult algae, the two species of rabbitfish consumed both the adult and the juvenile seaweeds. The consequence is that the full-grown species were not replaced.

In the long run, such seaweed clearance could be a threat not just to Mediterranean ecosystems but also to the Mediterranean diet, because these ecosystems ultimately support the shoals of sardines, anchovies, red mullet, sea bass, bream, tuna and other specialties of the tables of Spain, Greece and Italy.

“This research highlights the need to work out how the interactions between different species will change in a warming world,” Dr Vergés said. − Climate News Network

Warmer Atlantic widens invader’s hunting ground

Moving home: an Indo-Pacific lionfish on a reef off the North Carolina coast Image: NOAA
Moving home: an Indo-Pacific lionfish cruises on a reef off the North Carolina coast
Image: NOAA

By Tim Radford

The exotic lionfish, already a long way from the reefs of its Indo-Pacific home, is heading further north up the US coast as global warming causes big changes to ocean habitats.

LONDON, 28 September, 2014 − The venomous lionfish is on the move. This invasive species has been observed in deeper waters off the North Carolina coast since the turn of the century, but new research suggests it may now be expanding its range into the shallower levels.

Since the lionfish (Pterois volitans) is actually native to the Indo-Pacific region, it is already a long way from home. But what now gives it licence to hunt further north is warmer sea temperature.

Global warming has already begun to make huge differences to ocean habitat. The bluefin tuna is a temperate zone fish that has already been observed in Arctic waters off the coast of Greenland, and commercial species such as red mullet, a creature of the Mediterranean, has been seen in the North Sea and even in Norwegian waters.

Now researchers in the US have reported that the lionfish – an invader first observed off the Florida coast in the 1980s − is spreading through the north-west Atlantic.

Temperature is the key determinant for a fish on the move. Fisheries biologist Paula Whitfield, of the National Oceanic and Atmospheric Administration’s National Centres for Coastal Ocean Science, and colleagues report in the journal Marine Ecology Progress Series that they surveyed 40 species of fish off the reefs of North Carolina.

Tropical species

These reefs have always been home both to temperate and tropical species, at the limits of their ranges. But now the reefs are becoming more tropical − and so is the local population.

“Along the North Carolina coast, warming water temperatures may allow the expansion of tropical fish species, such as lionfish, into areas that were previously uninhabitable due to cold winter temperatures,” Whitfield says.

“The temperature thresholds collected in this study will allow us to detect and estimate fish community changes related to water temperature.”

The lionfish tends to prefer water warmer than 15.2°C, and so normally inhabits the warm currents of the deeper waters in the temperate Atlantic. It is a carnivore that seems to enjoy a wide range of prey. It makes itself at home in a wide variety of habitat, and is considered a serious threat to other species of reef fish. – Climate News Network

Ice melt dilutes Arctic sea’s CO2 clean-up role

Cutting edge: climate scientist Dorte Haubjerg Søgaard studies the sea ice in Greenland Image: Søren Rysgaard,  Arctic Research Centre, Aarhus University
Cutting edge: climate scientist Dorte Haubjerg Søgaard studies the sea ice in Greenland
Image: Søren Rysgaard, Arctic Research Centre, Aarhus University

By Tim Radford

New scientific research confirms that global warming is melting increasingly larger areas of Arctic sea ice − and reducing its vital function of removing CO2 from the atmosphere.

LONDON, 26 September, 2014 − The Arctic ice cap has just passed its summer minimum – and it’s the sixth lowest measure of sea ice recorded since 1978, according to scientists at the US space agency NASA.

For three decades, the shrinking Arctic ice – and the growing area of clear blue water exposed each summer – has been a cause of increasing alarm to climate scientists.

Polar seasonal changes are measured annually by NASA, but reliable satellite data goes back only to 1978, For much of the 20th century, the Arctic was part of the Cold War zone, so only Soviet naval icebreakers and US nuclear submarines took consistent measurements − and neither side published the data.

But studies of 17th and 18th century whaling ships’ logbooks and other records make it clear that the ice once stretched much further south each summer than it does today.

Steady decline

In the last 30 years, the thickness and the area of the ice have both been in steady decline, with predictions that in a few decades the Arctic Ocean could be virtually ice free by September, opening up new sea routes between Asia and Europe.

This year could have been worse, although the area of ice fell to little more than 5 million square kilometres − significantly below the 1981-2010 average of 6.22 million sq km.

“The summer started off relatively cool, and lacked the big storms or persistent winds that can break up ice and increase melting,” said Walter Meier, a research scientists at NASA’s Goddard Space Flight Centre. “Even with a relatively cool year, the ice is so much thinner than it used to be. It is more susceptible to melting.”

Warming in the Arctic is likely to affect climate patterns in the temperate zones, and the state of the polar ice has become of such concern that researchers are using ground-based and sea-based monitors to explore the physics of the phenomenon.

But there is another reason for the attention: as polar ice diminishes, so does the planet’s albedo − its ability to reflect sunlight back into space.

So, as the ice shrinks, the seas warm, making it more difficult for new ice to form. And greater exposure to sunlight increases the probability that permafrost will thaw, releasing even more greenhouse gases locked in the frozen soils.

Now researchers have found another and unexpected example of climate feedback that could affect the cycle of warming. Climate scientist Dorte Haubjerg Søgaard, of the Greenland Institute of Natural Resources and the University of Southern Denmark, and research colleagues have discovered that sea ice itself is an agency that removes carbon dioxide from the atmosphere.

That the oceans absorb the stuff, and tuck it away as calcium carbonate or other marine minerals, is old news.

“But we also thought that this did not apply to ocean areas covered by ice, because the ice was considered impenetrable,” Søgaard said. “However, new research shows that sea ice in the Arctic draws large amounts of CO2 from the atmosphere into the ocean.”

The research is published in four journals, Polar Biology, The Cryosphere, The Journal of Geophysical Research: Atmospheres and Marine Ecology Progress Series.

Two-stage pattern

The Danish research team observed a complex, two-stage pattern of gas exchange as ice floes formed off southern Greenland. They measured the role of atmospheric carbon dioxide in the formation and release of calcium carbonate crystals form in the sea ice, and kept a tally during a 71-day cycle of the carbon dioxide budget.

In the course of this complicated bit of natural cryo-chemistry, they found that some CO2 was carried deep into the ocean with dense, heavy brines, as the ice froze and some was captured by algae in the thawing ice.

They also identified a third factor: the “frost flowers” that formed on the new ice had an unexpectedly high concentration of calcium carbonate.

The profit-and-loss accounting meant that every square metre of ice effectively removed 56 milligrams of carbon from the atmosphere during the 71-day cycle. Over an area of 5 million sq km, this would represent a significant uptake.

But the real importance of the discovery is that scientists have identified yet another way in which the ice – while it is there – helps keep the Arctic cold, and yet another way in which carbon dioxide is absorbed by the oceans.

“If our results are representative, then the sea ice plays a greater role than expected, and we should take account of this in future global CO2 budgets,” Søgaard said. – Climate News Network

Pre-history proof of climate’s see-saw sensitivity

The woolly rhinoceros once roamed wild on the plains of Europe Image: Public Library of Science via Wikimedia Commons
The woolly rhinoceros once roamed wild on the plains of Europe
Image: Public Library of Science via Wikimedia Commons

By Tim Radford

Computer simulations reaching back deep into the last Ice Age have enabled scientists to put a historic perspective on how even small variations in the climate system can lead to dramatic temperature change.

LONDON, 24 August, 2014 − It doesn’t take much to change a planet’s climate – just a little shift in the Northern hemisphere glacial ice sheet and a bit more carbon dioxide in the atmosphere. After that, the response is rapid. The tropical rain belt moves north and the southern hemisphere cools a bit, in some sort of bipolar see-saw response.

Sound familiar? It does, and it doesn’t. It all happened long before the internal combustion engine, or even the new Stone Age.

Researchers from the Alfred Wegener Institute’s Helmholtz Centre for Polar and Marine Research, Bremerhaven, the University of Bremen, Germany, and the University of Cardiff in the UK, report in Nature journal that they have made climate simulations that agree with observations of historical climate change that date back 800,000 years.

Long before the present alarms about global warming through the emission of carbon dioxide from fossil fuels, climate researchers were puzzled by the phenomenon of the Ice Ages and the “interglacials” that punctuated those long periods when the Arctic ice extended from the North Pole to the Atlantic coast of France, and over huge tracts of North America.

Vanished species

Mysteriously, and at great speed, the temperatures would rise by up to 10°C and the vast walls of ice would retreat. Lion, hyena and rhinoceros would invade the wild plains of what is now southern England, and now-vanished species of humans would hunt big game and gather fruit and seeds in the valleys and forests of Europe and America.

Since the end 10,000 years ago of the last ice age – itself a very rapid event – was the springboard for agriculture and civilisation, and eventually an Industrial Revolution based on fossil fuels, the story of climate change plays a powerful role in human history.

So any analysis of the tiny shifts in ice cover that seemed to trigger these dramatic, bygone events can be helpful in understanding the long story of the making of the modern world.

The researchers found a tentative scenario involving weak ocean currents, and prevailing winds that shifted the sea ice and allowed the oceans and atmosphere to exchange heat, pushing warmer water into the north-east Atlantic.

These changes precipitated a dramatic warming of the northern hemisphere in just a few decades, and the retreat of the glaciers for an extended period before the ice returned to claim much of the landmass again. But, overall, such changes tended to occur when sea levels reached a certain height.

“The rapid climate changes known in the scientific world as Dansgaard-Oeschger events were limited to a period of time from 110,000 to 23,000 years before the present,” said Xu Zhang, the report’s lead author.

“The abrupt climate changes did not take place at the extreme low sea levels, corresponding to the time of maximum glaciations 20,000 years ago, or at high sea levels such as those prevailing today. They occurred during periods of intermediate ice volume and intermediate sea levels”

Climate swings

Co-author Gerrit Lohmann, who leads the Wegener Institute’s palaeoclimate dynamics group, said: “Using the simulations performed with our climate model, we were able to demonstrate that the climate system can respond to small changes with abrupt climate swings.

“At medium sea levels, powerful forces − such as the dramatic acceleration of polar ice cap melting − are not necessary to result in abrupt climate shifts and associated drastic temperature changes.”

How much this tells anybody about modern climate change is open to debate. Right now, according to this line of evidence, the planet’s climate could be in one of its more stable phases of the Earth’s history.

But while the conditions for the kind of rapid change recorded in pre-history do not exist today, Prof Lohmann warns that “sudden climate changes cannot be excluded in the future”. – Climate News Network

Atlantic depths may hold key to heat hiatus

A jellyfish floats just above the seafloor of the deep Atlantic Image: NOAA/OAR/OER via Wikimedia Commons
A jellyfish floats just above the seafloor of the deep Atlantic Ocean
Image: NOAA/OAR/OER via Wikimedia Commons

By Tim Radford

Researchers analysing millions of oceanographic measurements believe they may finally have got to the bottom of the conundrum about why there is a slowdown in global warming despite greenhouse gas emissions rising.

LONDON, 22 August, 2014 − For years, researchers have puzzled over the temperature rises that haven’t happened – but scientists in China and the US believe they have cracked the mystery of the missing heat.

While calculations indicate that global average temperatures should be rising predictably, the planetary thermometers tell a different story.

But now Xianyao Chen, an oceanographer at the Ocean University of China in Qingdao, and Ka-Kit Tung, an atmospheric scientist at the University of Washington in Seattle, report in Science journal that they think they know where the notional extra heat has gone. It is at the bottom of the Atlantic Ocean.

And this time their conclusion isn’t based only on mathematical models and computer simulations. In their research − funded by the US National Science Foundation and the National Natural Science Foundation of China – they analysed millions of measurements of temperature and salinity taken by oceanographic instruments since 1970, and tracked the pathways that the heat must have taken since the beginning of the 21st century.

High temperatures

But first, a restatement of the conundrum. For more than a century, climate scientists have known that higher levels of carbon dioxide in the atmosphere mean higher atmospheric temperatures. For more than 30 years, every investigation has confirmed this link. And for the last 30 years of the 20th century, as greenhouse gas emissions increased, so did average temperatures.

This rise has continued, with 13 of the 14 warmest years ever recorded all falling in the 21st century, but the rate of increase unexpectedly slowed.

Researchers had expected that there would be some sort of heat hiatus, but not during the first years of the century, and they have been scratching their heads and examining the data again.

Some think that the measurements may be incomplete, or that natural cycles, such as the Pacific cooling event called La Niña, may be at play. Some have suggested that the pattern of trade winds may have a role in taking the warmth into the deep ocean, and some have suspected all along that the heat could be found far below the oceanic surface.

In the same week as the publication in Science, Reto  Knutti, a climate physicist at the federal technology institute ETH Zurich, and his colleague, Markus Huber, reported in Nature Geoscience that the apparent slowdown could be attributed to a cocktail of causes: a longer period of weaker solar irradiance – the sun has its own cycles of intensity − and to the cycle of El Niño and La Niña weather phenomena in the Pacific, and also to incompletely measured data.

“Many of the earlier papers had focused on
symptoms at the surface of the Earth”

But the Science report authors think they have an in-depth solution. “Every week, there’s a new explanation of the hiatus,” said Ka-Kit Tung. “Many of the earlier papers had focused on symptoms at the surface of the Earth, where we see many different and related phenomena. We looked at observations in the ocean to try to find an underlying cause.”

The oceans cover 70% of the planet, and are capable of storing 90% of the planet’s heat content. So the two Science report authors argue that a sudden shift in ocean salinity that corresponded with the slowdown of global warming could have triggered the movement of the heat to much deeper waters.

Saltier water is denser, sinks faster, and takes surface heat with it. As the two scientists see it, the depths of the North and South Atlantic have absorbed more heat in the last 14 years than the rest of the global ocean system put together.

This does not mean that global warming is not a problem: heat in the deep oceans is likely to come back to the surface, and to the atmosphere, sooner or later.

Natural cycle

The changes in the Atlantic ocean circulation system are part of a natural cycle that seems to date back many centuries. The surprise discovery by Chen and Tung is that the heat is tucked away in the Atlantic and Southern Oceans, rather than the Pacific − the suspected hiding place until now.

The argument is a complex one, and the latest research probably hasn’t settled the matter.

“All these analyses of ocean heat content are interpreting small changes in ocean temperature, and it will need to be picked over and repeated by others before being fully accepted,” said Professor Andrew Watson, head of the Marine and Atmospheric Science group at the University of Exeter, UK.

And Piers Forster, professor of climate change at the University of Leeds in the UK, said: “Most importantly, this paper is another nail in the coffin of the idea that the hiatus is evidence that our projections of long-term climate change need revising down.

“Variability in the ocean will not affect long-term climate trends, but may mean we have a period of accelerated warming to look forward to.” – Climate News Network

Antarctic warming could accelerate sea level rise

Warming would cause more Antarctic ice to break off and melt Image: PIK/R.Winkelmann
Rising concern: warming would cause more Antarctic ice to break off and melt
Image: PIK (R.Winkelmann)

By Alex Kirby

An international study says warming is affecting not only the Arctic but also the Antarctic – and that could significantly raise global sea levels much faster than previously predicted.

LONDON, 20 August, 2014 − The effect of climate change on the world’s two polar regions looks like a stark contrast: the Arctic is warming faster than most of the rest of the Earth, while most of Antarctica appears to remain reassuringly locked in a frigid embrace.

But an international scientific team says the reality is quite different. The Antarctic is warming too, it says, and the southern ice could become the main cause of global sea level rise during this century − far sooner than previously thought.

The study, led by the Potsdam Institute for Climate Impact Research (PIK) in Germany, found that ice discharge from Antarctica could contribute up to 37 centimetres to global sea levels by 2100.

Computer simulations

The study is the first comprehensive estimate of the full range of Antarctica’s potential contribution to global sea level rise based on physical computer simulations. It combines state-of-the-art climate models and observational data with various ice models.

The results of the study − published in the European Geosciences Union’s journal, Earth System Dynamics − reproduce Antarctica’s recent contribution to sea level rise, as observed by satellites over the last two decades.

“If greenhouse gases continue to rise as before, ice discharge from Antarctica could raise the global ocean by an additional 1 to 37 centimetres this century,” says the study’s lead author, Anders Levermann, PIK professor of dynamics of the climate system.

“Science needs to be clear about the uncertainty,
so that decision-makers can consider the potential implications . . .”

“This is a big range – which is exactly why we call it a risk. Science needs to be clear about the uncertainty, so that decision-makers on the coast and in coastal mega-cities like Shanghai or New York can consider the potential implications in their planning processes.”

The scientists analysed how rising global average temperatures resulted in a warming of the ocean around Antarctica, influencing the melting of the Antarctic ice shelves.

Antarctica currently contributes less than 10% to global sea level rise and is a relatively minor player in comparison with the impact of the oceans’ increasing thermal expansion and the melting of glaciers.

But the major contributors to future long-term sea level rise are expected to be the huge volumes of ice locked up in Greenland and the Antarctic ice sheets. The marine ice sheets in West Antarctica alone could raise sea level by several metres over a period of several centuries.

The study’s computed projections for this century’s sea level contribution are significantly higher than the upper end of the latest projections by the Intergovernmental Panel on Climate Change. These suggest a probable rise by 2100 of around 60cm, although other estimates put the figure almost twice as high.

Even if governments can agree and enforce strict climate policies limiting global warming below the international target level of a maximum 2°C increase, Antarctica’s contribution to global sea level rise is expected still to range from 0 to 23cm this century.

Critical input

A co-author of the study, Robert Bindschadler, from the NASA Goddard Space Flight Center, said: “This paper is a critical input to projections of possible future contributions of diminishing ice sheets to sea level by a rigorous consideration of uncertainty of not only the results of ice sheet models themselves but also the climate and ocean forcing driving the ice sheet models.

“Billions of dollars, euros, yuan, etc, are at stake, and wise and cost-effective decision-makers require this type of useful information from the scientific experts.”

But major modeling challenges still remain. Datasets of Antarctic bedrock topography, for instance, are still inadequate, and some physical processes of interaction between ice and ocean cannot yet be sufficiently simulated.

The team also emphasises that the study’s results are limited to this century, while all 19 of the comprehensive climate models used show that the impacts of atmospheric warming on Antarctic ice shelf cavities will hit with a time delay of several decades.

However, Levermann says: “Earlier research indicated that Antarctica would become important in the long term. But pulling together all the evidence, it seems that Antarctica could become the dominant cause of sea level rise much sooner.” − Climate News Network

Climate changes ensnare Antarctic predator

Antarctic fur seals at Stromness on South Georgia island Image: Liam Quinn via Wikimedia Commons
Antarctic fur seals at Stromness on South Georgia island
Image: Liam Quinn via Wikimedia Commons

By Tim Radford

British scientists have recorded lower birth weights in female Antarctic fur seals as warming seas deplete their prime food source − but they have also observed genetic variations that could be crucial for survival.

LONDON, 29 July, 2014 − Climate change has begun to take its toll of one of Antarctica’s top predators. The Antarctic fur seal is being born with a lower weight and tends to breed later than earlier generations − almost certainly in response to the reduced availability of its prime food, krill.

But the fur seal (Arctocephalus gazelle) is also changing in other ways. British Antarctic Survey (BAS) scientists report in Nature that those females that survive to motherhood are more likely to have a higher level of genetic variation − a characteristic known as “heterozygous”, associated with higher fitness in many species.

In a world of environmental change – of warming seas and changing ocean chemistry – this confers a survival advantage, in that the individual is more likely to cope with the stresses of change.

Research such as this is based on long periods of observation, and the scientists gathered data from as far back as 1981 to assess the changes in a population of fur seals in South Georgia, in the southern Atlantic.

Genetic samples

They measured age, body length, weight, counted the numbers of sea pups, noted the diet, and recorded climate data. They also took genetic samples from 1,728 seals.

“Compared with 20 years ago, we can see that female fur seals are now born with a lower weight, those that survive and return to breed tend to be the bigger ones, and they have their first pup later in life than they used to,” said the report’s lead author, Jaume Forcada, BAS marine mammal leader.

“Such changes are typically associated with food stress. An important food source for the seals is Antarctic krill, and decades of data collected at South Georgia show how changes in the seal population have occurred over time with krill availability.

“Even if krill is very abundant, environmental variation determines its availability in the seals’ feeding grounds. This variation is driven by climate, which impacts local atmospheric, sea ice and oceanographic conditions.”

If the climatic conditions are adverse, then krill is harder to find, which makes it tough on fur seals and, directly or indirectly, all other Antarctic predators. But the picture for the moment remains uncertain.

Recently, other researchers pronounced that the population in Antarctica of the Adélie penguin – another greedy consumer of krill – is higher than all previous estimates, which suggests that some species at least are, for the moment, finding enough for supper.

But the krill population is sensitive to a south polar phenomenon called the southern annular mode (SAM), a seasonal pattern of winds and pressures that changes from time to time.

Survival fitness

The BAS team found that the seal population responded to the notorious El Niño cycle in the Pacific, and to the SAM, and that the data from this population clearly showed a response to climate change. Overall, the number of heterozygous seals has increased by 17%, but other indicators of survival fitness are not so encouraging.

“Over the last two decades, the proportion of breeding females that are highly heterozygous has increased, as these individuals are more likely to survive the changing conditions,” said the report’s co-author, Joe Hoffman, reader in population genetics at Bielefeld University, Germany.

“Strong selection by the environment can drive rapid evolution. However, in this case the seals do not appear to be evolving because surviving females do not pass their heterozygosity on to their offspring.

“Therefore, with each new generation the process of selection has to start all over again, with only those individuals that happen to be born heterozygous having a good chance of survival. As the climate continues to change, many fur seal pups are not surviving to adulthood, and the population is declining.” – Climate News Network