Investors chip in as renewables rise towards record level

Investors chip in as renewables rise towards record level

Climate-friendly boost for global energy mix as scientists say solar power alone could now meet the needs of California five times over.

LONDON, 12 April, 2015 − Carbon dioxide levels might be soaring, and governments might be slow to reduce fossil fuel emissions and contain climate change − but the smart money could nevertheless be going into renewable sources such as wind and solar power.

The United Nations Environment Programme (UNEP) says green energy investments rose by 17% in 2014 to reach a total of $270bn − the first annual increase in three years, and just 3% behind the all-time record set in 2011 of $279bn.

In 2014, renewable energies added 103 gigawatts to global capacity. This is roughly equal to the output of all 158 nuclear power reactors in the US.

Wind, solar, biomass, waste-to-power, geothermal, small hydro and marine power contributed an estimated 9.1% of world electricity generation in 2014. This also represents a notional saving in carbon dioxide emissions of 1.3 gigatonnes, which is about twice what pours from the exhausts of the world airlines.

Markets mature

“Once again in 2014, renewable made up nearly half the power capacity added worldwide,” said Achim Steiner, executive director of UNEP.

“These climate-friendly energy technologies are now an indispensable component of the global energy mix and their importance will only increase as markets mature, technology prices continue to fall and the need to rein in carbon emissions becomes ever more urgent.”

But, according to scientists backed by the Carnegie Institution, there is much more that could be done. A team led by Earth system scientists Rebecca Hernandez, now of the University of California Berkeley, reported in Nature Climate Change that solar energy alone could meet the demands of the state of California in the US up to five times over.

Solar power systems based on photovoltaics could generate up to 15,000 terawatts of energy a year. And mirror-driven concentrating systems could add another 6,000 terawatt hours.

California – now in the grip of a calamitous drought that has been tentatively linked to climate change triggered by human investment in fossil fuels – is the most populous state in the US. The researchers calculated that more than 27,000 square kilometres of land would be fit for photovoltaic solar construction, and more than 6,000 square kilometres for concentrating solar power.

“Their importance will only increase as markets mature, technology prices continue to fall
and the need to rein in carbon emissions becomes ever more urgent”

But there is a darker side to the story of renewable energy. On the other side of the Rocky Mountains, scientists have been working on the much more complex carbon budget of biofuels, which deliver energy in liquid form.

They count as renewable energy because, although they emit carbon dioxide when burned, they do not, overall, add to the levels of greenhouse gases in the atmosphere. That is because biofuel crops take carbon dioxide from the air to grow their tissues for conversion to fuel, and return the gas through engine exhausts.

But there have been persistent worries. One is that the conversion of food to fuel may not be the most efficient use of cropland.

Destroy ecosystems

The approach remains carbon neutral, as long as farmers exploit existing cropland. But the danger is that farmers might plough up existing grassland, destroy ecosystems, and release ancient stored soil carbon to the atmosphere, to make global warming worse.

Environmental scientist Tyler Lark and colleagues at the University of Wisconsin-Madison report in Environmental Research Letters that, between 2008 and 2012, US farmers ploughed seven million acres of new land for corn and soy for conversion to biofuels intended as renewable energy for motor transport.

In the course of doing so, they could have emitted as much carbon to the atmosphere as 34 coal-burning power stations in one year – or 28 million new cars on the road.

Nearly a quarter of the land converted came from long-standing prairies and ranges, much of it within the Central Plains, from North Dakota to Texas. And much of this was planted with corn intended for conversion to biofuels.

“It mimics the extreme land-use change that led to the Dust Bowl in the 1930s,” Lark says. “We could be, in a sense, ploughing up prairies with each mile we drive.” – Climate News Network

Share This:

Forests can soak up a third of carbon emissions

Forests can soak up a third of carbon emissions

Report commissioned by Prince Charles’s charity says protecting tropical forests could enable them to absorb billions of tonnes of the Earth’s emissions of carbon.

LONDON, 11 April, 2015 − Looking after the world’s tropical forests would be worthwhile in its own right, for the sake of their human and animal inhabitants and their wider effects on the natural world.

But researchers say it would also have a significant bonus. Properly cared for, the forests could cancel out between a quarter and a third of the planet’s carbon emissions.

They argue that it is not just outright destruction of the trees that is the problem, but the ways in which the forests become degraded by the incursion of different forms of development − logging, obviously, but also fires, mining, ranching, roads, and their effect in splitting the huge tracts of forested land into smaller and more isolated patches.

In a report commissioned by Prince Charles, the heir to the British throne, they say deforestation and degradation of the forests may account together for between 14% and 21% (1.4-2.2 gigatonnes of carbon, or GtC; a gigatonne is a billion metric tonnes) of all emissions of carbon, and perhaps even more if tropical peatlands and mangroves are included.

Atmospheric carbon

Against this, the forests absorb almost as much atmospheric carbon as they account for − an annual total of 1.2-1.8GtC, the authors say. But the report argues that simply offsetting the amount of carbon sequestered in this way against the amount emitted is insufficient, for two reasons.

The first is the evidence that human activities are responsible for a significant proportion of CO2 absorption. Second, total emissions are probably much higher than the traditional greenhouse gas (GHG) accounting approach allows.

Taken together, these two factors suggest that slowing damage to the forests and keeping them in the best condition possible is more important than many people have realised.

But the forests continue to suffer damage. The report says: “…it can be argued that the causes and consequences of tropical forest degradation have been given too little attention, with the science now pointing toward degradation being a very significant component both of greenhouse gas emissions and the weakening of forest ecosystems”.

We can act on forests now, therefore buying much-needed time to enable the transformation to a low-carbon economy

It paints a sobering picture of the present situation, saying there is “no sign yet that overall rates of deforestation or degradation are decreasing”. The report says the annual area of global forest lost is about 8.5m hectares.

Rising world demand for timber and wood products, and for farm produce, it says, “will significantly increase pressure on tropical forests over the next few decades”.

The report was commissioned by the Prince’s International Sustainability Unit. In a foreword, Prince Charles writes: “It is an alarming fact that rates of deforestation and degradation continue to rise, and that the underlying causes of this increase are set to become very much more acute…”

But he sounds an encouraging note: “We can act on forests now, therefore buying much-needed time to enable the transformation to a low-carbon economy.”

Considerable uncertainty

There is considerable uncertainty about how much the forests contribute to GHG emissions. In 2012, NASA said that tropical deforestation had accounted for about 10% of human carbon emissions from 2000 to 2005 − a much lower figure than previous estimates.

Forest degradation is often more difficult to detect than deforestation itself, and is almost invisible to satellite monitoring. Research in six tropical countries suggests that degradation by logging can cause significant damage, with GHG emissions on average about 12% of those caused by deforestation.

Together, their impact is serious. The Global Forest Watch online monitoring network says that Brazil lost 5.9% of its forest cover between 2001 and 2012, while Indonesia lost 9.2% over the same timespan. − Climate News Network

Share This:

Woodlands revival adds new piece to carbon cycle puzzle

Woodlands revival adds new piece to carbon cycle puzzle

Growing number of trees on the world’s savanna grasslands helps offset carbon storage concerns caused by depletion of the great rainforests.

LONDON, 9 April, 2015 − Despite continuing concern about the fate of iconic rainforests, new research shows that the world’s forests have stored away an extra 4 billion tonnes of carbon in the last dozen years and the total amount of woodland has increased worldwide since 2003.

The encouraging news comes from Australian scientists, who report in Nature Climate Change that they used a new technique to analyse 20 years of satellite data, to estimate the overall pattern of growth in global vegetation.

The fate of the forests could hardly be more important. The world’s greenery is part of the natural atmospheric cycle, and the notorious greenhouse effect – the steady rise in carbon dioxide levels in the Earth’s atmosphere since the start of the Industrial Revolution and the use of fossil fuels to power economic growth – is in part also a response to land-use change and forest loss. Growth requires atmospheric carbon dioxide, and burning and land clearance releases it.

Biggest headache

So the study by remote sensing scientist Yi Liu, of the Climate Change Research Centre at the University of New South Wales, and colleagues becomes an important contribution to solving the climate scientist’s biggest headache: making sense of the carbon budget.

Accurate climate models depend on accurate assessment of the carbon cycle, and the forests play a critical role. Timber in the forests is essentially carbon in the bank.

And, for once, the news is encouraging. The great rainforests of the Congo and the Amazon may not be doing so well, but grasslands in other parts of the world have become increasingly more wooded, and there has been a massive expansion of forested land in China.

“The increase in vegetation primarily came from a lucky combination of environmental and economic factors, and massive tree-planting projects in China,” Dr Yi Liu says.

“Vegetation increased on the savannas of Australia, Africa and South America as a result of increasing rainfall, while in Russia and former Soviet republics we have seen the re-growth of forests on abandoned farmland. China was the only country to intentionally increase its vegetation with tree-planting projects.”

The Australian scientists are not the only researchers using instruments in high orbit to identify the green shoots of recovery.

“A lot rides on human decisions to slow
climate change. The clock is ticking
for the future of these forests”

Dmitry Shchepashchenko, a researcher at the International Institute for Applied Systems Analysis in Austria, and colleagues report in the journal Remote Sensing of Environment that a cocktail of remote sensing data, UN agency statistics and “crowdsourcing” – help from citizen scientists – has provided new high resolution maps of global forest cover.

This will serve as a basis for other studies, and for economic planning and policy-making. The maps are available on the Geo-Wiki website.

But the overall picture of a greener world remains uncertain. On the same day, scientists backed by the Carnegie Institution in Washington reported in Nature Geoscience that drought damage has already led to widespread forest death, and the toll could be much greater by the 2050s.

They based their study on the condition of the trembling aspen forests of the American southwest during the drought of 2000-2003.

Once again, their work is aimed at improving climate models and calculations of the response of forests to climate change, and could throw new light on the processes at work in forests subjected to water stress.

Drought damage

That is because the arboreal vascular system that transports water from the roots to the leaves is itself damaged by drought. But at what level would drought impose permanent damage on a tree’s physiology?

The Carnegie scientists were able to establish a drought threshold for the trembling aspen (Populus tremuloides), and the drought at the beginning of the century is known to have killed 17% of the species in Colorado.

The research is fundamental: just one study of one species in one region that provides a starting point for further studies, and thus for surer measures of vegetation response to climate change, and ultimately to a better understanding of the carbon cycle.

“Finding the thresholds in plant physiology, after which climate stress causes tree mortality, will allow us to resolve uncertainty over the fate of forest ecosystems in a changing climate,” says the study leader, William Anderegg, a researcher at Princeton Environmental Institute in the US.

“But, most importantly, a lot rides on human decisions to slow climate change. The clock is ticking for the future of these forests.” – Climate News Network

Share This:

“Water Man of India” makes rivers flow again

“Water Man of India” makes rivers flow again

Revival of traditional rainwater harvesting has transformed the driest state in India, and could be used to combat the effects of climate change across the world.

Chennai, 6 April, 2015 − School textbooks in India have been telling children for generations that Rajasthan is an inhospitable state in the northwest of the country, constrained by the hot, hostile sands of the Thar Desert.

But the driest state in India has a softer, humane face as well – that of Rajendra Singh, known as the “Water Man of India”, whose untiring efforts in water conservation in arid Rajasthan have led to him being awarded the Stockholm Water Prize, commonly referred to as the Nobel Prize for Water.

Singh did not attempt to design a new technology to address Rajasthan’s water problems. He began simply by de-silting several traditional surface level rainwater storage facilities – called “johads” in the local Hindi language − that fell out of use during British colonial rule. And, in doing so, he has quenched the thirst of villages that were dying.

Thousands of villages followed his example, and so much water was captured and soaked into aquifers that dry rivers have begun to flow again.

Water wars

Singh believes that water conservation is vital to combat the effects of climate change and to avoid “water wars” in the future.

And such is his reputation on water issues that he received a call from Prince Charles, heir to the UK throne, seeking advice on how to handle the devastating summer floods in England in 2007.

In an interview with Climate News Network, Singh recalled how he began making water flow again in perennially dry Rajasthan by inculcating do-it-yourself initiatives in the villagers.

He explained: “I imbibed Gandhian ideals during my school days that emphasised working for empowerment of villages.

“As an Ayurvedic (traditional medicine system in India) doctor, I went to the Alwar district of Rajasthan early in 1982 to start a clinic and spread awareness among youth about health and hygiene.

“I was perturbed because the majority of young men had already left the village, and the rest were about to leave for green pastures in the cities as they were unable to battle the water scarcity. Besides, they also wanted to earn good money.

“Women, old people and children were left behind in the village. I reworked my doctor plans to address the water scarcity, as that would actually save people from several diseases.

A village johad in arid Rajasthan. Image: LRBurdak via Wikimedia Commons

A village johad in arid Rajasthan. Image: LRBurdak via Wikimedia Commons

“Along with the support of the villagers, I de-silted a couple of johads in Alwar. When rains filled them, people in neighbouring villages trusted my initiative and over 8,000 johads are renovated now.

“Hordes of youth have returned to their villages as water filled tanks and the standard of living in hamlets rose in a big way.”

He said that five rivers in this region had revived and started to flow again.

Johads are simple tanks built across a slope, with a high embankment on three sides and the fourth side left open for rainwater to enter. They hold water during rains and recharge the aquifer below to ensure continuous water supply to the neighbourhood in the dry season.

“Community-based water management yields
long-lasting results and is the only solution for water shortages”

But Singh explained: “After the advent of bore wells and pipelines connecting every hamlet in India, we forgot the traditional water conservation facility used by our ancestors.”

Having won the Stockholm prize, what does the future hold for the Water Man?

“My immediate plans are to take up a global-level campaign on water conservation and peace,” he said. “As predicted by several experts, the next world war will be for water. Unless every one of us starts at least now to save water and protect the water bodies, we face severe conflicts − apart from suffering climate change impacts. I will be leading the global water walk in the UK in August 2015.

“During his two visits (2004 and 2006), Prince Charles told me that he was impressed by the johad model of conservation. He then called me in 2007 to be part of his team of water engineers to work out all possibilities to address the crisis during the floods in England. They listened to my suggestions on creating the johad model on hilltops and downhill to arrest water in the hills and prevent floods in the future.”

In India, however, he is not confident that the government has the right ideas. “Our government is pushing a different idea of inter-linking of rivers, which will only politicise the water crisis. I was part of the national-level body to clean up the holy Ganga River from 2010 to 2012, but I quit as there was lack of accountability and it ended up as a toothless organisation.

“Inter-linking of rivers is not a solution for flood and drought. As far as India is concerned, it will result only in inter-linking of corruption and politics.

Hearts and brains

“What we need is inter-linking of the hearts and brains of people to take up water conservation in their homes and community. If exploitation of river water and polluting the river are stopped, every river will flow. Water engineering should be focused on conservation of each drop, and not on changing the course of rivers, which are designed by Mother Nature.”

Singh is also against the idea of privatising water supplies, and does not believe it would result in people using water more judiciously.

“Water is not a commodity,” he said. “In my own example, johads are de-silted by the people and used by people. Community-based water management yields long-lasting results and is the only solution for water shortages.

“When people realise their need and de-silt lakes and ponds as a group, they can use the water without having to pay for it. Right to water is every man’s right, and monetising water will increase conflicts in the society.

“Helping a community to have access to clean and safe water means helping the community to have a dignified life.” – Climate News Network

Share This:

Changing climate causes weather chaos in Chile

Changing climate causes weather chaos in Chile

What is being described as an environmental catastrophe is hitting Chile as torrential rains batter the north while the south suffers prolonged drought and wildfires.

LONDON, 30 March, 2015 − The Atacama desert region of northern Chile, one of the driest areas on Earth, has been hit in recent days by torrential rains and floods that have caused deaths, swept away homes and left much of the region without power.

Meanwhile, in the usually lush southern parts of the country, wildfires are raging across lands and forests parched by the longest period of drought in living memory, endangering some of the world’s richest flora and fauna.

“We are witnessing a massive environmental catastrophe,” Luis Mariano Rendon, head of the Accion Ecologica environmental group, told the AFP news agency.

Irreparable loss

“There have been whole species lost, such as the Araucaria araucana (monkey puzzle tree). They are trees that take hundreds of years to reach maturity, so this is a practically irreparable loss for current generations.”

The trees, a distant relative of the pine, are considered sacred by indigenous Mapuche people, and have been declared part of Chile’s unique natural heritage.

Scientists say the drought in the southern region – which is the powerhouse of Chile’s multi-billion dollar agricultural sector, and site of many of its famous vineyards – is a long-term trend, linked to climate change.

“There is no choice but to assume that the lack of water resources is a reality that is here to stay”

Chile’s president, Michelle Bachelet, says millions of dollars will have to be invested in desalination plants and new reservoirs to cope with the continuing drought. Canals and irrigation systems will also have to be upgraded.

“Faced with this critical situation,” he says, “there is no choice but to assume that the lack of water resources is a reality that is here to stay, and that puts at risk the development of important regions of the country.”

The Maipo river basin − which includes Santiago, Chile’s capital − contains nearly 40% of the country’s population and is an important area for agriculture, mining, and for power generation, much of which comes from hydroelectric sources.

Researchers, led by the Centre for Global Change at the Pontifical Catholic University of Chile, have been mapping the impact that climate change is likely to have on the Maipo basin.

Projections so far indicate that rainfall is likely to drop by 10% in the area over the period up to 2040, and by up to 30% by the end of the century. Meanwhile, temperatures will rise by 1˚C above the historical average over the next 25 years, and by between 2.5˚C and 3.5˚C by 2100.

Power source

The researchers have also been investigating glacier mass and melt in the Andes − the source of the bulk of the country’s water supply for millions of people in the region, and a crucial power source.

Scientists say that accelerated melting of Andean glaciers is being caused by atmospheric warming.

Water shortages are hitting not only the agricultural sector, but also mining – one of Chile’s major industries. The country is the world’s biggest producer of copper, and mining companies say they are having to invest in costly desalination plants in order to get water for processing copper concentrate from milled rock.

A drop in river levels feeding hydroelectric facilities is also leading to an increase in coal-fired power plants – a major source of climate-changing greenhouse gases.

Despite the recent rains in the north of the country, scientists are warning of the dangers of desertification in the region, with the northern desert advancing further south each year. – Climate News Network

Share This:

China ramps up the rhetoric on climate change

China ramps up the rhetoric on climate change

Senior Chinese official warns that climate-related temperature rises could seriously affect the country’s harvests and major infrastructure projects.

LONDON, 28 March, 2015 − Zheng Guogang, head of the China Meteorological Administration, says future variations in climate are likely to reduce crop yields and damage the environment.

In one of the strongest official statements to date on the challenges faced, Zheng told China’s official Xinhua news agency that climate change could have a “huge impact” on the country, with a growing risk of climate-related disasters.

“To face the challenges from past and future climate change, we must respect nature and live in harmony with it,” Zheng said. “We must promote the idea of nature, and emphasise climate security.”

Violent rainstorms

Zheng said temperature rises in China over the past century have been higher than the global average. He warned that river flows and harvests are likely to suffer as the incidence of droughts and violent rainstorms across the country increases.

In turn, this could affect major infrastructure projects such as the Three Gorges Dam on the Yangtze river, the biggest hydroelectric scheme in the world.

Other projects that could be hit by changes in climate are the rail line between the northwestern province of Qinghai and Tibet − the highest railway line in the world, and partly built on permafrost − and a massive project aimed at bringing water from the south of China to the parched towns and cities of the north.

“The safe production and operation of major strategic projects is facing a serious threat,” Zheng said.

Although millions of people in China have benefited from years of double-digit economic growth, damage to the environment has been extensive and has become a major social, health and political issue.

“To face the challenges from past and future climate change, we must respect nature
and live in harmony with it”

China is now the world’s biggest emitter of greenhouse gases − largely due to its continued reliance on coal for power generation.

There are frequent public protests about the state of the environment, particularly water and air pollution. In Beijing and several other cities, air pollution frequently exceeds internationally-recognised health safety limits.

The authorities are taking various measures to tackle the country’s considerable environmental problems, but they are nervous about public protests on the environment getting out of control.

Earlier this month, “Under the Dome” – a documentary on China’s pollution, made by one of the country’s leading investigative reporters − was taken down from the internet by the authorities after having been viewed by an estimated 100 million people.

Green development

Under China’s present five-year plan, which started in 2011, there is a focus on the need to encourage “green, cyclical and low-carbon development”.

The plan claims: “These actions will increase the strategic position of combating climate change in China’s overall economic and social development.”

In an effort to improve its environment and meet international obligations to cut emissions, China is in the midst of a renewable energy programme costing billions of dollars.

Late last year, Beijing announced for the first time a date when the country’s emissions would peak – 2030 – and then taper off in the years following.

China is also involved with the US and other countries in a wide range of energy-saving research projects aimed at combating climate change. – Climate News Network

Share This:

Eyes in the sky see seas rising alarmingly faster

Eyes in the sky see seas rising alarmingly faster

Scientists analysing sophisticated satellite data warn that rises in sea level more rapid than expected are increasing threats to coastal cities and food security.

LONDON, 27 March, 2015 − Satellite observations show that sea level rise may have been underestimated, and that annual rises are increasing.

A collaborative effort between maritime organisations and space agencies in measuring sea level rise has come to the conclusion that it has been increasing by 3.1 millimetres a year since 1993 – higher than previous estimates.

The evidence is growing from a number of recent studies of the ice caps that sea level rise is accelerating, posing a threat to many of the world’s largest and most wealthy cities − most of which are also important ports.

Many of these in the developing world have little or no protection against rising sea levels. Some in Europe – such as London and Rotterdam − already have flood barriers to protect areas below high tide or storm surge level, but  these will need to be replaced and raised in the next 30 years.

Delta areas in Egypt, Vietnam, Bangladesh and China – vital to each of the nation’s food supply – are already losing land to the sea.

Difficult to measure

One of the problems scientists have had in getting accurate worldwide data is that the sea does not rise evenly around the globe. This, added to the fact that in some places the land is sinking and in other places is rising, makes exact information difficult to measure from tide gauges.

Since 1991, it has been possible to measure the surface of the oceans across the entire globe by using satellite altimetry, whereby the satellite emits a signal towards the ocean’s surface and receives the reflected echo. The sea level is calculated from the round-trip time between the satellite and the sea surface and the position of the satellite along its trajectory.

While the data from tide gauges provides information about local changes relative to the land, the use of altimeter satellites enables the recording of data on a global basis.

Luciana Fenoglio-Marc, a scientist specialising in physical and satellite geodesy at the Technical University of Darmstadt, Germany, uses these and other satellite geodetic observation data in her research.

She is working with the European Space Agency and the European Organisation for the Exploitation of Meteorological Satellites, and in close consultation with the German Federal Institute of Hydrology and the Federal Maritime and Hydrographic Agency of Germany.

This lends credibility to the report that European coastal cities are not sufficiently prepared for the threats that climate change poses

The increase of around 3.1mm per year since 1993 indicates a marked rise in the average sea level when compared to previously recorded values, which show a sea level rise of between 1mm and 2mm per year in the 20th century.

In its fifth Assessment Report (AR5, 2013), the Intergovernmental Panel on Climate Change (IPCC) predicted a further increase in the global sea level of 30cm to 70cm by the end of the 21st century, based on a scenario involving a medium rate of global warming.

The report predicted that increases will not be even, but will have a greater impact on some regions than on others. The result could be coastal flooding and rising groundwater levels – an outlook that makes it essential to have a reliable data basis for dealing with the dangers this poses.

Protecting coasts from the rising seas will require considerable adaptations, particularly in such low-lying coastal regions as the North Sea coast of Germany and the many low-lying islands in the tropics.

Another aspect of the work with satellites is measuring ocean density to see how much water expansion − because of warming − is leading to sea level rise. A direct estimation of mass changes in the Mediterranean Sea show expansion to be the cause of an average sea level rise of about 2.1mm per year since 1993.

According to the IPCC, about 35% of the sea level increase between 1993 and 2010 was the result of thermal expansion, and the rest was due to melting ice and increasing run-off from land. But the latest observation shows this may not be true of the Mediterranean.

Too cautious

There is wide debate about whether the IPCC estimates of sea level rise have been too cautious, suggesting that the sea level will rise more than a metre this century – and some have even suggested that the rise could be two metres.

This is mainly because there has been uncertainty about how much of the huge icecap in Greenland, and most of all in Antarctica, would contribute to sea level rise by 2100 – if at all.

Research published since the IPCC estimates were made show that both icecaps will be large net contributors to sea level rise, and possibly much quicker than previously thought.

This lends credibility to the report last week that European coastal cities are not sufficiently prepared for the threats that climate change poses. The report − titled Underfunded, Unprepared, Underwater? Cities at Risk – is by the E3G non-governmental organisation, and it says governments across the European Union are leaving their major cities exposed to danger from climate change, including floods, heat waves and sea level rise.

Since it takes an average of 30 years from planning to complete construction of a major flood barrier to protect a city, the report warns that the problem needs to be given urgent consideration and funding. – Climate News Network

Share This:

Heat-tolerant beans could help keep millions fed

Heat-tolerant beans could help keep millions fed

Plant researchers say new varieties of a tropical crop essential to people’s survival in Africa and Latin America can withstand the effects of global warming.

LONDON, 26 March, 2015 − Scientists believe they may have found how to safeguard a staple tropical crop, on which hundreds of millions of people depend, from the depredations of climate change.

They have discovered − through conventional breeding rather than genetic modification − 30 new “lines” (varieties) of beans that will thrive in the higher temperatures expected later this century, and which will pose a particular threat to harvests in Africa and Latin America.

The new “heat-beater” beans, an important source of protein for around 400 million people, have been identified by plant breeders with the CGIAR global agriculture research partnership.

Steve Beebe, a senior CGIAR bean researcher, announced at a conference in Ethiopia: “This discovery could be a big boon for bean production because we are facing a dire situation where, by 2050, global warming could reduce areas suitable for growing beans by 50%.

Worst-case scenario

“Incredibly, the heat-tolerant beans we tested may be able to handle a worst-case scenario where the build-up of greenhouse gases causes the world to heat up by an average of 4°C.

“Even if they can only handle a 3°C rise, that would still limit the bean production area lost to climate change to about 5%. And farmers could potentially make up for that by using these beans to expand their production of the crop in countries such as Nicaragua and Malawi, where beans are essential to survival.”

Dr Beebe told the Climate News Network: “So far, so good. Some of the lines are also drought-tolerant, and some are resistant to Bean Golden Yellow Mosaic Virus.

“We are taking these beans into a new environment that we don’t know from the bean perspective. . . Will we find more surprises?

“There are two caveats. First, so far the best lines are small red types for Central America and parts of East Africa, so we have a long road to improve a range of grain types, colours, etc.

“The other issue is that we are taking these beans into a new environment that we dont know from the bean perspective. We have seen that a soil pathogen, pythium, is more severe. Will we find more surprises?”

Rising heat as climate change intensifies is expected to disrupt bean production in central and South American countries, including Nicaragua, Haiti, Brazil and Honduras. African countries thought to be at risk are principally Malawi and the Democratic Republic of the Congo, followed by Tanzania, Uganda and Kenya.

Many of the new heat-tolerant beans developed by the CGIAR scientists are “crosses” of the common bean − which includes pinto, white, black, and kidney beans − and the tepary bean, a hardy survivor cultivated since pre-Columbian times in what is now part of northern Mexico and the southwest US.

Highly nutritious

Beans are often called the “meat of the poor”. They are highly nutritious, providing not only protein but fibre, complex carbohydrates, vitamins, and other micronutrients. In addition to heat tolerance, CGIAR researchers are also breeding lines with a higher iron content, in an effort to tackle malnutrition.

The new beans are the result of CGIAR’s work to develop new crop varieties that can thrive in drastic weather extremes, based on research in its “genebanks”, which preserve the world’s largest seed collections of the most important staple crops.

The heat-beaters emerged from the testing of more than 1,000 bean lines − work that began as an effort to develop beans that could tolerate poor soils and drought.

The focus turned to heat-tolerance following a 2012 report from CGIAR scientists warning that heat was a much bigger threat to bean production than previously believed. − Climate News Network

Share This:

Climate is now main worry for conservation group

Climate is now main worry for conservation group

The devastating effects of a changing climate have become the biggest challenge faced by a leading protector of the UK countryside.

LONDON, 24 March, 2015 − The head of one of the UK’s best-known conservation groups says the greatest threat to its work is now climate change.

Dame Helen Ghosh, director-general of the National Trust, told BBC Radio that there is devastation of wild Britain and the creatures that live there. “Who would have thought that the house sparrow and hedgehog were going to become rare?” she said.

“For the future and we see this on our coastline, in our countryside, even in our houses climate change, we think, is the big threat to us.”

The Trust is the charity responsible for the care of countryside and historic houses across England, Wales and Northern Ireland (a separate body does the work in Scotland).

It is also one of Britain’s largest landowners, with 600,000 acres (250,000 hectares) and 700 miles (1,125 km) of coastline in its care, and more than 300 historic buildings − all held in trust for the future.

About 20 million people go to the Trust’s houses and gardens annually, but 200 million visit its upland, lowland and coastal sites.

Destruction of habitats

Dame Helen said: “The main challenge to our conservation purpose is the destruction of habitats, of wildlife − the fact that we see precious species 60% in decline.”

She suggested that, apart from climate, the other cause of that was intensive land management.

When it comes to recognising the risks of a warming world, Dame Helen is certainly well qualified. As a former leading civil servant, one of her last jobs before joining the Trust was to head the UK government’s Department for Environment, Food and Rural Affairs, which at that time had climate change as one of its responsibilities.

As part of its efforts to help address climate change, Dame Helen said the Trust would be getting 50% of the energy it uses in its houses and properties from renewable sources by 2020.

For example, she said, there would be “lots of hydro schemes across the country, lots of biomass boilers” as part of the renewable energy policy. The Trust aims to reduce its own energy consumption by about 20%.

It will also be working with its own tenant farmers, she said, “to try to make sure that land is farmed in environmentally-friendly ways that we get production, and also the bees and the butterflies”. Climate News Network

Share This:

Changing weather patterns hit Pakistan’s crops

Changing weather patterns hit Pakistan's crops

Torrential rain and hailstorms have raised fears that Pakistan’s winter crops yield could be seriously depleted – and global warming is the likely culprit.

Islamabad, 23 March, 2015 − Anxious farmers in Pakistan waited for weeks for the rains to arrive – but when the skies finally opened, the downpour was so intense it destroyed crops and put the harvest in jeopardy.

“We weather scientists are really in shock, and so are farmers, who have suffered economic losses due to crop damage,” says Muzammil Hussain, a weather forecasting scientist at the Pakistan Meteorological Department (PMD).

“The wind from the southeast has carried moisture from the Arabian Sea. Normally, the northeast wind brings rain during winter, and the southeast wind brings monsoon rains in summer. But the pattern has changed this year because of what is believed to be global warming.”

Unusually heavy

Farmers across much of Pakistan plant winter crops of wheat, oilseed and potato late in the year and wait for rains to water the land. This year, the rains arrived more than three weeks late and were unusually heavy, accompanied by violent hailstorms. Along with the rains, temperatures also dropped.

Ibrahim Mughal, chairman of the Pakistan Agri Forum, says excessive moisture due to heavy bouts of late rain is likely to lead to outbreaks of fungus on crops, and production could be halved.

“If the rains come a month ahead of the harvesting time [April to mid-May], it is always disastrous,” he says. “It can hit production for a crop such as wheat by between 20% and 30%, and if the rain is accompanied by hailstorms and winds then the losses can escalate to more than 50%.”

Arif Mahmood, a former director general at PMD, says the onset of winter across much of Pakistan is being delayed by two to three days every year, and there is an urgent need for farmers to adapt to such changes.

“If the rains come a month ahead of the harvesting time, it is always disastrous”

“Over recent years, winter has been delayed by 25 to 30 days, and also the intensity of the cold has increased, which has affected almost every field of life − from agriculture to urban life.”

This year has also been marked by abrupt changes in temperature. Ghulam Rasul, a senior scientist at PMD, says big swings in temperature are likely to add to the problems being faced by millions of farmers in Pakistan.

“The average temperature during the first two weeks [of March] was between 11 and 13 degrees Celsius, but now it’s on a continuous upward trend and has reached 26˚C over the space of two days,” he reports.

“The winter rains in the north and central area of Pakistan, and the sudden rise and fall in temperature, are related to climate change.”

Serious damage

Similar storms and late winter rains have also caused serious damage across large areas of northern India.

The states of Uttar Pradesh and Maharashtra – the two most populous states in the country – have been particularly badly hit.

In Maharashtra, snow and landslides have blocked roads and cut off towns and villages.

In Uttar Pradesh, there are fears that more than 50% of the wheat crop has been lost in the eastern part of the state. – Climate News Network

Share This: