Global warming threatens colder climate for Europe

Global warming threatens colder climate for Europe

New evidence that increased melting of sea ice as the Earth warms could weaken the Gulf Stream and reduce temperatures in western Europe.

LONDON, 3 July, 2015 – Scientists have yet again warned that weakening ocean circulation in the North Atlantic could deliver a climate paradox − a colder Europe as a consequence of global warming.

A study published in Nature Climate Change found that as sea ice off Iceland and Greenland retreats, the flow of cold, dense water to the bottom of the North Atlantic ocean could be reduced, and therefore weaken the warming effects of the Gulf Stream.

The great submarine current − sometimes called the Atlantic Conveyor − flows south to surface in the tropics as the Gulf Stream, which then flows north again to deliver tropic warmth to European coasts.

However, a slowdown in the natural overturning of the ocean could weaken the Gulf Stream, which in turn could cool the atmosphere over the British Isles and western Europe.

“A warm western Europe requires a cold North Atlantic, and the warming that the North Atlantic is now experiencing has the potential to result in a cooling over Western Europe,” says Kent Moore, a professor of physics at the University of Toronto Mississauga, Canada.

Calamitous change

Such a possible collapse of a natural oceanic system is predicated as one of the irreversible tipping points that could result in calamitous climate change.

Scientists have twice warned in the past six months that such change could be irreversible, unless governments jointly decide to dramatically reduce greenhouse gas emissions from the combustion of fossil fuels by switching to renewable sources of energy.

Another research group reported in March this year on how the changing salinity of the northern ocean waters − because of the increasing flow of meltwater from land-borne glaciers − threatened a weakening of the Atlantic Conveyor.

“The heat exchange is weaker – it’s like turning down the stove 20%”

In the latest study, Professor Moore and colleagues from Norway, the US and the UK looked not at changes in ocean salinity, but at the exchange of heat between sea and air.

Climate is driven by contrasts, and the flow of heat between water and wind in winter has weakened by around 20% since 1979. The Arctic is the fastest-warming region of the planet, and changes in the polar climate can have dramatic consequences for the temperate zones.

Prof Moore and his colleagues looked at wintertime data from the Iceland and Greenland Seas between 1958 and 2014, then used computer simulations to model potential changes to the Conveyor − more formally known to oceanographers and climate scientists as the Atlantic Meridional Ocean Circulation.

Cold and salty

The warm current loses its heat to the atmosphere as it moves north, and water that is both cold and salty is denser and more likely to descend.

The most effective place for such a process to happen is at the edge of the sea ice. If the sea ice retreats, then so does the region of maximum heat exchange. For the past 10,000 years or so, this heat exchange has happened at the ideal spot for surface waters to sink. Any change might not be for the better.

The Gulf Stream is the agency that makes Britain, for example, about 5°C warmer than Labrador in Canada, on the same latitude. A British government chief scientific adviser once calculated that the Gulf Stream delivered the warmth of 27,000 power stations. So if it weakens, Europe could start to feel the chill.

“The heat exchange is weaker – it’s like turning down the stove 20%,” Prof Moore says. “We believe the weakening will continue and eventually cause changes in the Atlantic Meridional Overturning Circulation and the Gulf Stream, which can impact the climate of Europe.” – Climate News Network

Share This:

Greenhouse gas-guzzlers spurn extra carbon dioxide

Greenhouse gas-guzzlers spurn extra carbon dioxide

Minutely small marine plants called diatoms mitigate climate change by consuming carbon dioxide and producing oxygen. But they may reject the rising levels of the greenhouse gas.

LONDON, 1 July, 2015 – Diatoms – those tiny ocean-dwelling photosynthesisers that produce a fifth of the planet’s oxygen each year – may not gulp down more carbon dioxide more enthusiastically as greenhouse gas levels in the atmosphere continue to rise.

Instead, they may switch off and use the gas more efficiently. If so, the consequences for the rest of the planet could be uncomfortable.

Climate scientists who try to model the machinery of the atmosphere have always banked on a “fertilisation effect” from at least some of the extra CO2 pumped into the atmosphere by the human burning of fossil fuels and the clearance of the forests. They may no longer be able to do so.

The discovery – reported in Nature Climate Change – is based on laboratory experiments with one single-celled phytoplankton species called Thalassiosira pseudonana and meticulous study of its genetic mechanisms.

Rising concentrations

It may not be a sure guide to what actually happens in the crowded, complex world of climate change later this century. But all phytoplankton are survivors of the same evolutionary history, and many of them are known to be equipped with carbon-concentrating mechanisms to make the most of the available carbon dioxide in the atmosphere. So what happens to one could be true for all.

Gwenn Hennon, an oceanographer at the University of Washington in Seattle, US, and colleagues decided to work out what happened to their laboratory diatoms in atmospheres in which carbon dioxide levels continued to rise to 800 parts per million later this century.

Right now, the concentration is almost 400 parts per million, but for most of human history until the invention of the internal combustion engine, and the exploitation of fossil fuels, it has been around 280 parts per million. A third of the emissions from factory chimneys and motor exhausts is absorbed by living things in the oceans, starting with diatoms and other phytoplankton.

The Seattle team found that while many photosynthesisers do grow faster with more CO2, the oceanic diatoms did not: they responded vigorously at first, but as long as there was a normal supply of other nutrients, over 15 generations, they slowed down.

Slow response

“There are certain genes that respond right away to a change in CO2, but the change in the metabolism doesn’t actually happen until you give the diatoms some time to acclimate,” said Hennon, a doctoral student. “Instead of using that energy from the CO2 to grow faster, they just stopped harvesting as much energy from light through photosynthesis and carried out less respiration.”

Studies like this are an illustration of the intricacy and complexity of climate science. How the living world responds to greater human emissions of carbon dioxide from fossil fuels is key to all models of future climates, but researchers in general have expected the plant world to respond by consuming more, and slowing the rate of change overall.

There is some evidence that this is happening. Half of all the anthropogenic or human-made CO2 has been gulped down in the form of more lusty growth by vegetation, but this “negative feedback” effect has been countered by other factors: more greenery in the Arctic, for instance, could accelerate global warming, and anyway, as plants grow more vigorously, so do plant predators.

And increasingly, climate scientists have begun to realise that although the responses of the forests and arid lands  are vital factors, the big players could be the creatures hardly anyone ever sees: the fungi and tiny fauna in the soil  beneath the trees, and of course the phytoplankton in the oceans.

Oxygen creators

The Seattle calculation is that the evolutionary history of the diatoms explains the carbon-concentrating mechanisms in their genetic inheritance. Microbes are life’s foundation, and single-celled creatures evolved over three billion years when CO2 levels in the atmosphere were at colossal concentrations.

The diatoms and their ancestors were the creatures that created the oxygen atmosphere in which all other complex living things evolved. An enzyme evolved to help the first microbes cope with high levels of CO2, and has survived for billions of years.

“There hasn’t been another enzyme to replace it since, so plants and algae that photosynthesise have an enzyme that functions better at a higher CO2 level than we currently have,” Hennon said.

“When the CO2 remains high for a long time, however, the diatoms make a more radical metabolic shift. They decrease photosynthesis and respiration to balance the cell’s energy budget. In other words, the diatoms use less energy to grow at the same rate.” – Climate News Network

Share This:

Alaska’s glaciers melt faster as climate change speeds up

Alaska's glaciers melt faster as climate change speeds up

Climate change rather than natural causes is the main cause of Alaska’s glacier loss, which is set to speed up, US scientists say.

LONDON, 30 June, 2015 – The glaciers of Alaska are melting and retreating: the chief cause is climate change and the loss of ice is unlikely to slow, according to a new study by US scientists.

They calculate that the frozen rivers of the Pacific coast of America’s northernmost state are melting fast enough to cover the whole of Alaska with 30 cms of water every seven years.

Since Alaska is enormous – it covers 1.5 million square kilometres and is the size of California, Texas and Montana put together – this adds up to a significant contribution to sea level rise.

“The Alaska region has long been considered a primary player in the global sea level budget, but the exact details of the drivers and mechanisms of Alaska glacier change have been stubbornly elusive,” said Chris Larsen, a geophysicist at the University of Alaska Fairbanks, and lead author of a study in Geophysical Research Letters.

Taxonomy of change

Scientists from the University of Alaska and the US Geological Survey analysed studies of 116 glaciers in the Alaska region over a 19-year-period to estimate the rate at which ice melted and icebergs calved.

They used airborne lidar remote sensing technology and other techniques, historical data and a global glacier inventory to establish a kind of taxonomy of glacier change.

The Columbia Glacier in Prince William Sound had retreated more than 19 kilometres because of iceberg calving and had thinned by 450 meters in height since 1980. But, unexpectedly, tidewater glaciers – those that end in the ocean – seemed to make comparatively little contribution to sea level rise.

“Instead we show that glaciers ending on land are losing mass exceptionally fast, overshadowing mass changes due to iceberg calving, and making climate-related melting the primary control on mountain glacier mass loss,” Dr Larsen said.

Big contributor

He and his colleagues calculated that Alaska is losing ice at the rate of 75 billion metric tons a year. Such research is just one more piece of careful cross-checking in the great mosaic of climate research: another systematic confirmation that overall, glaciers are not losing ice in response to some natural cycle of change of the kind that occasionally confuses the picture for climate science.

The agency at work is largely global warming as a response to the steady rise in atmospheric carbon dioxide as a consequence of the burning of fossil fuels.

Mountain glaciers represent only 1% of the total ice on the planet: the other 99% is found in Greenland – which is melting fast – and in the great frozen continent of Antarctica, where ice mass is being lost at an increasing rate.

But although the mountains of the temperate and tropic zones bear only a tiny percentage of the planet’s ice, their melting accounts for almost a third of the sea level rise currently measured by oceanographers, and this melting will go on to become a big contributor to the sea levels later this century.

“Alaska will continue to be a major driver of sea level change in the upcoming decades”

Across the border in Canada, glaciologists have warned that the country will lose a huge volume of flowing ice, and while one team has confirmed that air pollution rather than global warming long ago began to strip Europe’s Alps of their glaciers, in general mountain peaks are warming faster than the valleys and plains below them.

Geophysicists and glaciologists have established that the glaciers of the tropical Andes are at risk, and in the Himalayan mountain chain glaciers seem to be in inexorable retreat with consequences that could be devastating for the many millions in the Indian subcontinent and in China who rely on seasonal meltwater for agriculture.

Glaciers are by definition hard to study – they are high, cold and in dangerous terrain – and such research is inevitably incomplete: the scientists for instance excluded glaciers smaller than three square kilometres. But together these small patches of flowing ice account for 16% of Alaska’s glaciated landscape. The 116 glaciers in the survey together added up to only 41% of the state’s glaciated area.

But the pattern established by the Fairbanks team suggests that melting will accelerate with climate change. “Rates of loss from Alaska are unlikely to decline, since surface melt is the predominant driver, and summer temperatures are expected to increase,” said Dr Larsen.

“There is a lot of momentum in the system, and Alaska will continue to be a major driver of sea level change in the upcoming decades.” – Climate News Network

Share This:

Earth has warmed as usual, with no slowdown

Earth has warmed as usual, with no slowdown

US scientists re-examine the collection of data which seemed to show global warming slowing since 1998 and say temperatures have continued to rise steadily.

LONDON, 7 June, 2015 − Forget about the so-called “hiatus” in global warming. The planet’s average temperatures are notching up as swiftly now as they did 20 or 30 years ago.

A team of US researchers has looked again not just at the data for the last 60 years but at how it has been collected, and done the sums again. They conclude, in the journal Science,  that the “estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a ‘slowdown’ in the increase of global surface temperature rise.”

But first, the story-so-far. Climate sceptics have repeatedly claimed that global warming has slowed or stopped. This was not the case: 13 of the hottest years ever recorded have all occurred in the last 14 years, and 2014 was the hottest of them all.

But when climate scientists looked at a graph of the rise of temperatures in the last 60 years, they saw – or thought they saw – a distinct drop in the rate of increase in global average temperatures in the last 15 years.

This apparent dip became the subject of a whole series of studies. Researchers had never expected the rise to follow a straight line – all sorts of natural climate cycles would naturally affect annual records – but the rate of increase was slower, and more sustained in its slowness, than anyone could explain, especially as there had been no drop in the greenhouse gas emissions that drive global warming.

Data anomalies

Some proposed that the expected extra heat in the atmosphere had been drawn down into the great oceans and others that an unnoticed increase in volcanic activity had helped screen the sunlight and cool the atmosphere unexpectedly. Yet another group looked not at average temperature patterns but the change in the frequency of heat waves and saw a different kind of rise.

Yet another group wondered if the problem might be only apparent: more complete data from many more parts of the world might combine to tell a different story. Thomas Karl and colleagues at the National Oceanographic and Atmospheric Administration in the US made this their starting point.

They looked again at how the data had been collected, and the gaps that might have appeared. Sea surface temperatures, for instance, were at different periods collected by bucket from a ship’s deck, by readings aboard surface drifting and moored buoys or by engine-intake thermometers in ships’ engine rooms, and there could be subtle differences not accounted for.

There were very few readings from the Arctic, yet the Arctic is by far the fastest-warming region of the planet, and the pattern of land-based temperature readings, too, repaid re-examination.

By the time the NOAA team had finished, the recalibrated figures told a different story. Between 1998 and 2012, the world warmed at the rate of 0.086°C per decade, more than twice the rate of 0.039°C per decade measured by the Intergovernmental Panel on Climate Change.

“We need to look really carefully at data quality and issues of instrument change”

The new figure is much closer to the rate estimated for the decades 1950 to 1999, at 0.113°C per decade. And the new analysis lifts the rate of warming from 2000 to 2014 to 0.116°C per decade, which if anything is an acceleration, not a slowdown.

British climate scientists have welcomed the finding: it is however the finding of just one group and, like all such research, will be accepted more readily if it can be separately replicated.

“This study makes the important point that we need to look really carefully at data quality and issues of instrument change,” said Piers Forster, professor of climate change at the University of Leeds, UK.

”Yet there are several legitimate judgment calls made when combining datasets to make a global mean-time series. I still don’t think this study will be the last word on this complex subject.”

But Peter Wadhams, a professor of ocean physics at the University of Cambridge, UK, called the study careful and persuasive, and said: “I think it shows clearly that the so-called ‘hiatus’ does not exist and that global warming has continued over the past few years at the same rate as in earlier years.” − Climate News Network

Share This:

Permafrost thaw’s runaway effect on carbon release

Permafrost thaw’s runaway effect on carbon release

Arctic warming is causing organic carbon deep-frozen in the soil for millennia to be released rapidly into the air as CO2, with potentially catastrophic impacts on climate.

LONDON, 14 May, 2015 − An international team of scientists has settled one puzzle of the Arctic permafrost and confirmed one long-standing fear: the vast amounts of carbon now preserved in the frozen soils could one day all get back into the atmosphere.

Since the Arctic is the fastest-warming place on the planet, such a release of greenhouse gas could only accelerate global warming and precipitate catastrophic climate change.

That the circumpolar regions of the northern hemisphere hold vast amounts of deep-frozen carbon is not in question.

The latest estimate is 1,700 billion tonnes, which is twice the level of carbon dioxide in the atmosphere and perhaps 10 times the quantity put into the atmosphere by burning fossil fuels since the start of the Industrial Revolution.

Hazard underlined

In recent weeks, researchers have already underlined the potential hazard. But the big question has been that if some of the trapped carbon must be escaping now, where is it going?

Researchers have checked the mouths of the Arctic rivers for the telltale evidence of ancient dissolved organic carbon – partly-rotted vegetable matter deep-frozen more than 20,000 years ago − and found surprisingly little.

Now Robert Spencer, an oceanographer at Florida State University, and colleagues from the US, UK, Russia, Switzerland and Germany report in Geophysical Research Letters that the answer lies in the soil − and in the headwater streams of the terrestrial Arctic regions.

Instead of flowing down towards the sea, the thawing peat and ancient leaf litter of the warming permafrost is being metabolised by microbes and released swiftly into the atmosphere as carbon dioxide.

“We found that decomposition converted 60% of the carbon in the thawed permafrost to carbon dioxide in two weeks”

The scientists conclude that the microbes, once they get a chance to work at all, act so fast that half of all the soil carbon they can get at is turned into carbon dioxide within a week. It gets into the atmosphere before it has much chance to flow downstream with the soil meltwater.

The researchers centred their study on Duvanny Yar in Siberia, where the Kolyma River sluices through a bank of permafrost to expose the frozen organic carbon.

They worked at 19 different sites − including places where the permafrost was more than 30 metres deep − and they found tributary streams made entirely of thawed permafrost.

Measurement of the carbon concentration confirmed that it was indeed ancient. The researchers analysed its form in the meltwater, then they bottled it with a selection of local microbes, and waited.

Used by microbes

“We found that decomposition converted 60% of the carbon in the thawed permafrost to carbon dioxide in two weeks,” says Aron Stubbins, assistant professor at the University of Georgia’s Skidaway Institute of Oceanography. “This shows that permafrost carbon is definitely in a form that can be used by the microbes.”

The finding raises a new – and not yet considered – aspect of the carbon cycle jigsaw puzzle, because what happens to atmospheric and soil carbon is a huge element in all climate simulations.

At he moment, permafrost carbon is not a big factor in projections by the Intergovernmental Panel on Climate Change.

Dr Spencer says: “When you have a huge frozen store of carbon and it’s thawing, we have some big questions. The primary question is, when it thaws, what happens to it?

“Our research shows that this ancient carbon is rapidly utilised by microbes and transferred to the atmosphere, leading to further warming in the region, and therefore more thawing. So we get into a runaway effect.” – Climate News Network

Share This:

Plant growth may speed up Arctic warming

Plant growth may speed up Arctic warming

Arctic plants may absorb more greenhouse gases as the region warms – but scientists say this could intensify the warming rather than moderate it.

LONDON, 10 May, 2015 – Green may not automatically mean innocent or planet-friendly after all. Korean and German scientists have identified a mechanism that could encourage plants to take up more carbon dioxide – and at the same time amplify Arctic warming by 20%. This counter-intuitive finding is published in the Proceedings of the National Academy of Sciences.

Jong-Yeon Park of the Max Planck Institute for Meteorology and colleagues have been looking at the role of phytoplankton, those tiny marine plants that flourish around land masses, exploit the nutrients that flow from rivers and turn the blue ocean sea-green. Like any grass or shrub or tree, they exploit sunlight and employ photosynthesis to soak up atmospheric carbon dioxide.

So as the Arctic Ocean warms, because of increasing emissions of carbon dioxide from the burning of fossil fuels, the ice melts, the blue sea water absorbs more sunlight, and the green things get a chance to grow and soak up some of that greenhouse gas as organic carbon in plant tissues. This is what engineers call negative feedback.

But it may not work like that. The scientists matched up a model of the climate system with a model of the ecosystem and did all the sums again. And they found that instead of reducing warming, an explosion of phytoplankton growth could actually amplify it.

More warming

If the seas warmed and the ice melted, then the overall albedo – the reflectivity of the Arctic – would be changed. More high energy solar radiation would get into the sea, and the phytoplankton harvest would be greater and go on for longer.

But more phytoplankton would mean more biological activity, which would directly warm the surface layer of the ocean, “triggering additional positive feedbacks in the Arctic, and consequently warming the Arctic further,” the authors warn.

“We believe that, given the inseparable connection of the Arctic and global climate, the positive feedback in Arctic warming triggered by phytoplankton and their biological heating is a crucial factor that must be taken into consideration when projecting future climate changes,” said Jong-Seong Kug, a professor at Pohang University of Science and Technology in Korea.

Science like this is a reminder that the climate system is a subtle and complex machine driven by sunlight, atmosphere, water – and carbon. A British team has warned that rainforests could in fact be emitting much more carbon than climate modellers have accounted for. That’s because they haven’t allowed for all of the dead wood.

“A large proportion of forests worldwide are less of a sink and more of a source”

Marion Pfeifer of Imperial College and colleagues report in Environmental Research Letters  that they surveyed a large area of forest in Malaysian Borneo to make their calculations.

Pristine, untouched forest is rare. Most forests provide an income for someone, and increasingly parts of the great forests are exploited by loggers and planters. In untouched forests, dead wood makes up less than 20% of the biomass. Dr Pfeifer and her colleagues found that in partially-logged forests, the dead wood could account for 64% of the biomass.

Details such as this could send climate modellers back to the drawing board. That is because the great riddle of climate science is: where does all the carbon go? The assumption has been that forests are “sinks” that collect atmospheric carbon. But that depends on the forest.

“I was surprised by how much of the biomass dead wood accounted for in badly-logged forests. That such logged forests are not properly accounted for in carbon calculations is a significant factor. It means that a large proportion of forests worldwide are less of a sink and more of a source, especially immediately following logging, as carbon dioxide is released from dead wood during decomposition,” Dr Pfeifer said.

“Selectively-logged tropical forests now make up about 30% of rainforests worldwide. That means such global calculations are wrong at least 30% of the time.” – Climate News Network

Share This:

No green light for whitening Arctic’s melting ice

No green light for whitening Arctic’s melting ice

Scientists pour cold water on the idea of preventing ice melt by using geo-technology to keep it white so that it reflects sunlight and stays frozen.

LONDON, 4 May, 2015 – Yet another geo-engineering solution to climate change has been proven potentially useless: even if you could paint the Arctic white, the world would still get warmer.

For the second time in months, scientists at the Carnegie Institution for Science in the US have shown that some technological solutions won’t work even in principle, let alone in practice.

Geo-engineering is, for some, the simple technological answer to climate change: if humans have inadvertently warmed the planet’s climate through technological change, then surely they can cool it again intentionally through technological ingenuity.

But Carnegie global ecologist Ken Caldeira and research colleagues − having already demonstrated that piping cold deep waters to the ocean surface would accelerate global warming, rather than reduce it − now report in Environmental Research Letters that changing the reflectivity of the northern hemisphere won’t have the intended consequences either.

Climate machinery

Caldeira, Ivana Cvijanovic, now at the Lawrence Livermore National Laboratory, and Douglas MacMartin, of the California Institute of Technology, decided to consider an aspect of the climate machinery known as albedo. This is a measure of the planet’s reflectivity.

It works like this: dark colours, such as blue oceans and green rainforests, absorb more sunlight, while white and pale surfaces – snow caps and ice sheets, for instance  – reflect most sunlight.

So the Arctic and Antarctic keep cold simply by staying frozen. But any consistent thawing pattern will make an icy region warmer, at an increasing rate.

This is happening at measurable speed, in the northern hemisphere. “By the middle of the century, the Arctic Ocean is predicted to be ice-free during part of the year,” Dr Cvijanovic says. “This could create substantial ecological problems in the Arctic, including habitat range and loss of biodiversity.

“However, the problem is not only local. A number of studies have indicated that Arctic sea ice loss can affect weather patterns across the northern mid-latitudes, including Europe, most of North America and much of Asia.”

“Even if you could do it, the direct negative consequences of reducing the amount of sunlight available to marine ecosystems could be huge”

So it would make sense to keep the Arctic cold and white − perhaps by filling the ocean with floating reflective grains, or the air above it with tiny bubbles to bounce back the incoming sunlight.

But the Carnegie team decided to work out, with help from computer models, what a whiter Arctic would achieve in a world in which humans went on burning fossil fuels in ever-increasing quantities, in which the atmosphere eventually held four times the carbon dioxide levels recorded at the start of the Industrial Revolution, and in which average planetary temperatures went up by a devastating 10°C.

Cooling effect

The whitening of the Arctic would restore a percentage of the ice – about three-quarters of a square kilometre for every whitened square kilometre. But the cooling effect would be much more modest.

And the return of the ice would not preserve the permafrost – home to colossal quantities of organic carbon that could, if released, become carbon dioxide – or prevent escapes of another potent greenhouse gas, methane.

While it might work to keep a bay or inlet frozen, it would not, in principle, save a frozen ocean, or save the world from catastrophic climate change.

“Simply put, our results indicate that whitening the surface of the Arctic Ocean would not be an effective tool for offsetting the effects of climate change caused by atmospheric greenhouse gases,” Professor Caldeira says.

“Furthermore, it is not clear to me that there is a technologically feasible way of actually doing this. And even if you could do it, the direct negative consequences of reducing the amount of sunlight available to marine ecosystems could be huge.” – Climate News Network

Share This:

Polar bears weakened by pollution as well as warmth

Polar bears weakened by pollution as well as warmth

Climate change causing habitat loss and reduced food is the main problem for polar bears, but plastic waste and other pollutants are growing risks.

LONDON, 17 April, 2015 − Greenland’s polar bears have a thyroid problem. Their endocrine systems, too, are being disrupted. In both cases the culprit agency is environmental pollution by a range of long-lived industrial chemicals and pesticides.

Kristin Møller Gabrielsen of the Norwegian University of Science and Technology in Trondheim and colleagues report in the journal Environmental Research that they examined the liver, muscle and kidney tissues taken from seven polar bears killed by Inuit hunters in East Greenland in 2011 and analysed the effect of more than 50 contaminants in plasma samples from Ursus maritimus, to see what effect organohalogen compounds could have on the bears’ thyroid systems.

All mammals have thyroid systems, and these are physiologically essential for growth, development, reproduction, stress response, tissue repair, metabolism and thermoregulation (an animal’s ability to keep its body temperature within limits): disruption at any stage of life can be damaging, but thyroid regulation is vital in the earlier stages of life.

But the researchers found high concentrations of plastic pollution and pesticide contamination in the creatures’ tissues, many of which could affect the hormonal systems.

Retreating ice

Polar bears face an uncertain future: the Arctic’s most iconic predator depends on sea ice for access to the most nourishing prey – seals − but thanks to global warming driven by greenhouse gases discharged by humankind since the start of the Industrial Revolution, the ice is in retreat. The bears can and do forage on land for small prey, eggs, berries and so on, but new research suggests that this is unlikely to help them much.

“The health of the Arctic polar bear is being attacked from all fronts, but among many other factors is the exposure to environmental contaminants,” said Maria Jesus Obregon, of the Biomedical Research Institute in Madrid, one of the authors.

“A wide variety of organochlorine compounds and pesticides have an effect on the thyroid hormones in plasma, tissues and deiodinase enzymes, which are in charge of stabilising the thyroid hormones in tissues.”

The biggest problem that confronts Ursus maritimus is still climate change, loss of habitat and a more precarious food supply. But as a marine mammal, the bear is exposed to a huge range of pollutants delivered by modern industry, transport and commerce.

Conservation guidelines

Researchers in February calculated that in 2010, around eight million tons of plastic waste
ended up in the world’s oceans.

A second team of researchers has framed guidelines for the conservation of the polar bear, and proposed 15 measures that could determine the factors important in saving the creature from ultimate extinction.

They report in the journal Science of the Total Environment that they questioned 13 specialists from four nations to propose ways of measuring polar bear health. Not surprisingly, climate change topped the list of threats, but the list also included nutritional stress, chronic physiological stress, diseases and parasites, and increasing exposure to competitors. Exposure to contaminants was the third largest threat.

“We still don’t know to what extent environmental changes will affect polar bear health and therefore its conservation,” say the authors. − Climate News Network

Share This:

Permafrost holds key to release of trapped carbon

Permafrost holds key to release of trapped carbon

The frozen soil of the northern polar regions holds billions of tonnes of organic carbon – and global warming could speed its escape into the atmosphere.

LONDON, 14 April, 2015 − Three sets of scientists in the same week have helped narrow the uncertainties about how the natural world will respond to extra carbon dioxide in the atmosphere caused by the burning of fossil fuels.

Carbon locked in the frozen earth will escape gradually as the Arctic permafrost melts – but the scientists say the process could accelerate.

As greenhouse gas levels soar, and soils warm, and plant roots tap down into the carbon stored there by centuries of ancient growth, they will release potent chemicals that will accelerate microbial attack – and speed up the release of carbon dioxide into the atmosphere.

The soil carbon cycle is one of the great headaches of climate science. And the Arctic is the first place to look for answers about it, and about how the Earth and oceans that store atmospheric carbon will respond to global warming.

Locked away

Around half of the world’s buried organic carbon is locked away in the soils of the northern circumpolar permafrost, and this huge vault of deep-frozen peat and leaf litter – more than 1,000 billion metric tonnes in the top three metres, at the latest estimate − contains twice as much carbon as is held in the atmosphere.

But the Arctic is the fastest-warming region on the planet, so what will happen as the permafrost thaws and plants begin to move north? Would it all be surrendered to the atmosphere in one devastating exhalation, triggering an explosion in global warming and causing trillions of dollars in economic damage?

An international team within the Permafrost Carbon Network thinks not. Their verdict, published in Nature journal, is that the current evidence suggests “a gradual and prolonged release of greenhouse gas emissions in a warming climate”. That is, humankind would have time to adapt.

“The data from our team’s syntheses don’t support the permafrost carbon bomb view,” says one of the team members, David McGuire, professor of landscape ecology at the University of Alaska Fairbanks.

“What our syntheses do show is that permafrost carbon is likely to be released in a gradual and prolonged manner, and that the rate of release through 2100 is likely to be of the same order as the current rate of tropical deforestation in terms of its effects on the carbon cycle.”

Since the tropical forests are already under pressure, this is hardly good news. And the picture is not a simple one.

“Even small changes will have serious effects on carbon concentrations in the atmosphere, and by extension on climate”

As the permafrost thaws, the soil microbes will get to work on the buried carbon, which will inevitably add to the soil warming, and provide an instance of what engineers call positive feedback, according to a team led by Jøgen Hollesen, senior researcher at the University of Copenhagen’s Centre for Permafrost.

He and colleagues report in Nature Climate Change that when they measured heat production in 21 contrasting organic permafrost soils, they found it to be between 10 and 130 times higher than in mineral soils measured in Greenland − and this would have “crucial implications for the amounts of carbon being decomposed”.

And in the same issue of Nature Climate Change, a team led by researchers from Oregon State University have confirmed that any kind of warming or plant growth is likely to get the soil microbes working as hard as they can – partly because the plants use chemistry to free the soil carbon so the bacteria can start to turn it back into carbon dioxide.

Neither of the two Nature Climate Change studies was directly concerned with climate change. The Danish scientists’ findings sprang from concern about what warming might do to the ancient middens that hold as-yet-unexamined evidence of early human settlement in the Arctic. The Oregon team were more concerned about the interactions that go on in the soil, and how they could be measured.

Chemical bonds

They found that plant roots released an exudate that acted to release the chemical bonds that keep a carbon bound to non-organic minerals in the soil. Warming could only speed the process, so more carbon dioxide will get into the atmosphere from the soil because of global warming.

This, again, is positive feedback at work. And it suggests climate scientists might be underestimating carbon loss from the soil by as much as 1% a year.

“Our main concern is that this is an important mechanism, and we are not presently considering it in global models of carbon cycling,” says soil and environmental geochemist Markus Kleber, one of the authors of the Oregon report.

“There is more carbon stored in the soil, on a global scale, than in vegetation, or even in the atmosphere. Since this reservoir is so large, even small changes will have serious effects on carbon concentrations in the atmosphere, and by extension on climate.” – Climate News Network

Share This:

Canada will lose many glaciers as climate warms

Canada will lose many glaciers as climate warms

Climate change could cause many glaciers in western Canada to start to disappear by 2040, affecting people and places that depend on their water.

LONDON, 10 April, 2015 − As the world warms, many of the great frozen rivers of Canada will not just retreat, but could vanish altogether.

New research suggests that maritime glaciers in the far northwest might survive, but more than two-thirds of Canada’s existing glaciers in British Columbia and Alberta could be lost altogether by 2100.

Garry Clarke, a glaciologist at the University of British Columbia in Vancouver, says: “Soon our mountains could look like those in Colorado or California, and you don’t see much ice in those landscapes.”

The consequences for the forests, grasslands, animals and communities that depend on glacial meltwater could be serious. The disappearance of the glaciers will also create problems for Canada’s hydroelectric industry, for agriculture and grazing, for the mining industry, for the salmon fishery, and for tourism.

Professor Clarke and his colleagues report in Nature Geoscience that they devised a model – a high-resolution computer simulation – of the glaciers of western Canada that explicitly mimicked glacial flow. Then they tested it with a range of scenarios for climate change, driven by human combustion of fossil fuels and rising atmospheric carbon dioxide levels in the last two centuries.

“Once the glaciers are gone, the streams will be a lot warmer and this will hugely change freshwater habitat”

There are more than 17,000 glaciers in British Columbia and Alberta, covering more than 26,000 square kilometres of the two provinces, and holding an estimated 2,980 cubic kilometres of ice. This puts western Canada as more glaciated than the Himalayas (which have less than 23,000 sq kms of glacier): the entire continent of South America has only 31,000 sq kms of glacier.

The researchers found that maritime glaciers in the northwest would endure, in a diminished state. But overall, the volume of the glaciers in western Canada would shrink by 70%, give or take 10%.

Right now glaciers, most of them between 100 and 200 metres thick, are thinning at a rate of about a metre a year. The peak flow of meltwater would most likely occur between 2020 and 2040. Thereafter, the rivers would be in decline.

Potential sea level rise as a consequence of this, the scientists say, would be “modest” at around 6mm, but the consequences for that part of Canada would be substantial.

The Columbia River, which flows from the interior to the Pacific coast of Washington and Oregon, yields the largest hydroelectric production of any river in North America. And the impact on freshwater ecosystems could be considerable.

“These glaciers act as a thermostat for freshwater systems,” said Professor Clarke. “Once the glaciers are gone, the streams will be a lot warmer and this will hugely change freshwater habitat. We could see some unpleasant surprises in terms of salmon productivity.” – Climate News Network

Share This: