Carbon storage hopes rise again

Carbon storage hopes rise again

Carbon capture and storage, if it proved possible, would help to make the main greenhouse gas harmless. American scientists say they are making progress.

LONDON, 20 April, 2015 – Two groups of US scientists are exploring new ways of capturing carbon dioxide from the atmosphere. One technology mimics the tree by using artificial photosynthesis. The other exploits a membrane that is a thousand times more efficient than any tree.

Although the nations of the world agreed in 2009 to attempt to limit the global warming temperature rise this century to no more than 2°C above pre-industrial levels, colossal quantities of the greenhouse gas carbon dioxide are still being emitted into the atmosphere.

So some researchers have been exploring the technology of carbon capture and storage (CCS): ways of trapping CO2 as it leaves the power station chimney or machinery exhaust and storing it for burial or reuse. Others have proposed “artificial trees” that could remove the gas from the atmosphere.

Now a team from the Howard Hughes Medical Institute, the Lawrence Berkeley National Laboratory, and the University of California at Berkeley report in the journal Nano Letters that their “potentially game-changing” technology could capture CO2 emissions before they get into the atmosphere and then use solar energy and water to turn the captured gas into the chemical substance acetate.

Once in acetate form, the substance could be the basis of pharmaceutical drug manufacture, biodegradable plastic feedstock, or even liquid fuel.

Renewable resources

Nanotechnology – engineering at precisions of a millionth of a millimetre – exploits a “forest” of light-capturing “nanowire arrays” dosed with selected populations of a bacterium called Sporomusa ovala to filter the flue gases for carbon dioxide. This inventive double act of silicon and a carbon-based life form then performs a conjuring trick called photo-electrochemistry: from the captured gas it delivers acetic acid, and it can go on doing so for about 200 hours.

A second bacterium – genetically engineered Escherichia coli – can then get to work on the product and turn it into acetyl coenzyme A as the starting point for a range of valuable chemical products. These could range from a precursor to the anti-malarial drug artemisinin to the fuel butanol.

“We believe our system is a revolutionary leap forward in the field of artificial photosynthesis,” said one of the authors, Peidong Yang of the Berkeley Lab. “Our system has the potential to fundamentally change the chemical and oil industry in that we can produce chemicals and fuels in a totally renewable way, rather than extracting from deep below the ground.”

The research continues. Right now, this sample of solar-powered green chemistry is about as efficient as nature’s original chemical plant: the leaf. But another team, according to Physics World, have a prototype that is a thousand times better than a tree as a “sink” for the carbon in carbon dioxide.

Storage problem

Klaus Lackner of Arizona State University’s Centre for Negative Carbon Emissions and colleagues are testing a synthetic membrane that can capture carbon dioxide from the air that passes through it.

The technology is based on a resin that works in dry atmospheres (in humid environments it actually releases the carbon dioxide, so it wouldn’t work everywhere). Prototype collectors trap between 10% and 50% of all the carbon dioxide that blows through the membrane.

The trapped CO2 could then be stored in a container, and either shipped off for deep, long-term burial or exploited in some way, perhaps as the raw material for liquid fuel. How the technology could be exploited demands a little further investigation. There are plans to test the membranes on the laboratory’s roof in Arizona.

But it is one thing to efficiently collect carbon dioxide: another to deal with it. Dr Lackner estimates that it would demand about 100 million receptacles the size of shipping containers to hold the carbon dioxide now emitted from the planet’s factories, vehicles and power stations.

“I believe we have reached a point where it is really paramount for substantive public research and development of direct air capture,” he told the American Physical Society meeting in Maryland. “The Centre for Negative Carbon Emissions cannot do it alone.” – Climate News Network

Share This:

Too much nitrogen reduces Alpine plant diversity

Too much nitrogen reduces Alpine plant diversity

Climate change caused by one of the less abundant greenhouse gases is playing havoc with plant life in Switzerland, posing problems for other forms of life and increasing the risk of erosion.

LONDON, 15 April, 2015 − Carbon dioxide isn’t the only greenhouse gas to change the world. Swiss scientists have just confirmed that nitrous oxide and other forms of atmospheric nitrogen deposition – from agriculture, from factory chimneys and motor exhausts and so on – is altering the grasses and wildflowers of the Alps and the valleys.

Plants cannot live without nitrogen: for most of evolutionary history, it has been available only in limited amounts. With the Industrial Revolution, that began to change. Tobias Roth of the University of Basel and colleagues report in the Royal Society journal Open Science  that the historic rise in the availability of nitrogen has reduced plant diversity everywhere in Switzerland.

The finding is not – of itself – new. Researchers tested the hypothesis that increasing levels of nitrogen presented a threat to “hotspots” of global biodiversity almost a decade ago. But in science, one general study is never enough.

More nitrogen

So Dr Roth and his colleagues did something much more detailed and comprehensive. They used six different measures of plant diversity to test what was happening on 381 study plots at a variety of altitudes and in different kinds of ecosystems across just one country. However the scientists measured plant diversity, it had been reduced.

That human-triggered changes to the atmosphere have affected Switzerland is not in much doubt: one research team recently established that alpine glaciers were in retreat in response to atmospheric pollution, and Dr Roth – now with the Swiss company Hintermann and Weber AG – last year demonstrated that birds, flowers and butterflies in the country were all heading uphill in response to global warming.

The latest research began with a baseline from earlier centuries: data taken from herbarium samples confirmed that available nitrogen had once been much more limited. The scientists then randomly selected 428 study plots – each a kilometre square – as their study samples.

Some had to be rejected, because they were entirely water, or in mountainous regions too rugged and dangerous for field research. But that left 381 sample plots, in the Alps and the Jura mountains, between the altitudes of 260 and 3,200 meters (850 and 10,500 feet).

Bad news

The researchers used qualified botanists who had received special training to conduct the surveys, and asked them to conduct, as closely as they could, a diagonal transect examination across each plot, if possible once in spring and again in summer, and to record all vascular plants. Altogether, the surveys delivered 93,621 observations of 1,768 plant species.

The scientists found that biodiversity had declined by 19% according to one measure and by 11% in another test. In general, the higher the nitrogen available, the lower the diversity.

This is bad news for ecosystems as a whole: diversity means stability. Extra sources of nitrogen fertility benefit some highly competitive groups of plants, at the expense of others.

“High plant diversity is important to us humans for many reasons,” said Valentin Amrhein, another of the authors. “For example, in the mountains a large number of plant species with different root depths will stabilise the soil more effectively and prevent erosion.” − Climate News Network

Share This:

Permafrost holds key to release of trapped carbon

Permafrost holds key to release of trapped carbon

The frozen soil of the northern polar regions holds billions of tonnes of organic carbon – and global warming could speed its escape into the atmosphere.

LONDON, 14 April, 2015 − Three sets of scientists in the same week have helped narrow the uncertainties about how the natural world will respond to extra carbon dioxide in the atmosphere caused by the burning of fossil fuels.

Carbon locked in the frozen earth will escape gradually as the Arctic permafrost melts – but the scientists say the process could accelerate.

As greenhouse gas levels soar, and soils warm, and plant roots tap down into the carbon stored there by centuries of ancient growth, they will release potent chemicals that will accelerate microbial attack – and speed up the release of carbon dioxide into the atmosphere.

The soil carbon cycle is one of the great headaches of climate science. And the Arctic is the first place to look for answers about it, and about how the Earth and oceans that store atmospheric carbon will respond to global warming.

Locked away

Around half of the world’s buried organic carbon is locked away in the soils of the northern circumpolar permafrost, and this huge vault of deep-frozen peat and leaf litter – more than 1,000 billion metric tonnes in the top three metres, at the latest estimate − contains twice as much carbon as is held in the atmosphere.

But the Arctic is the fastest-warming region on the planet, so what will happen as the permafrost thaws and plants begin to move north? Would it all be surrendered to the atmosphere in one devastating exhalation, triggering an explosion in global warming and causing trillions of dollars in economic damage?

An international team within the Permafrost Carbon Network thinks not. Their verdict, published in Nature journal, is that the current evidence suggests “a gradual and prolonged release of greenhouse gas emissions in a warming climate”. That is, humankind would have time to adapt.

“The data from our team’s syntheses don’t support the permafrost carbon bomb view,” says one of the team members, David McGuire, professor of landscape ecology at the University of Alaska Fairbanks.

“What our syntheses do show is that permafrost carbon is likely to be released in a gradual and prolonged manner, and that the rate of release through 2100 is likely to be of the same order as the current rate of tropical deforestation in terms of its effects on the carbon cycle.”

Since the tropical forests are already under pressure, this is hardly good news. And the picture is not a simple one.

“Even small changes will have serious effects on carbon concentrations in the atmosphere, and by extension on climate”

As the permafrost thaws, the soil microbes will get to work on the buried carbon, which will inevitably add to the soil warming, and provide an instance of what engineers call positive feedback, according to a team led by Jøgen Hollesen, senior researcher at the University of Copenhagen’s Centre for Permafrost.

He and colleagues report in Nature Climate Change that when they measured heat production in 21 contrasting organic permafrost soils, they found it to be between 10 and 130 times higher than in mineral soils measured in Greenland − and this would have “crucial implications for the amounts of carbon being decomposed”.

And in the same issue of Nature Climate Change, a team led by researchers from Oregon State University have confirmed that any kind of warming or plant growth is likely to get the soil microbes working as hard as they can – partly because the plants use chemistry to free the soil carbon so the bacteria can start to turn it back into carbon dioxide.

Neither of the two Nature Climate Change studies was directly concerned with climate change. The Danish scientists’ findings sprang from concern about what warming might do to the ancient middens that hold as-yet-unexamined evidence of early human settlement in the Arctic. The Oregon team were more concerned about the interactions that go on in the soil, and how they could be measured.

Chemical bonds

They found that plant roots released an exudate that acted to release the chemical bonds that keep a carbon bound to non-organic minerals in the soil. Warming could only speed the process, so more carbon dioxide will get into the atmosphere from the soil because of global warming.

This, again, is positive feedback at work. And it suggests climate scientists might be underestimating carbon loss from the soil by as much as 1% a year.

“Our main concern is that this is an important mechanism, and we are not presently considering it in global models of carbon cycling,” says soil and environmental geochemist Markus Kleber, one of the authors of the Oregon report.

“There is more carbon stored in the soil, on a global scale, than in vegetation, or even in the atmosphere. Since this reservoir is so large, even small changes will have serious effects on carbon concentrations in the atmosphere, and by extension on climate.” – Climate News Network

Share This:

Investors chip in as renewables rise towards record level

Investors chip in as renewables rise towards record level

Climate-friendly boost for global energy mix as scientists say solar power alone could now meet the needs of California five times over.

LONDON, 12 April, 2015 − Carbon dioxide levels might be soaring, and governments might be slow to reduce fossil fuel emissions and contain climate change − but the smart money could nevertheless be going into renewable sources such as wind and solar power.

The United Nations Environment Programme (UNEP) says green energy investments rose by 17% in 2014 to reach a total of $270bn − the first annual increase in three years, and just 3% behind the all-time record set in 2011 of $279bn.

In 2014, renewable energies added 103 gigawatts to global capacity. This is roughly equal to the output of all 158 nuclear power reactors in the US.

Wind, solar, biomass, waste-to-power, geothermal, small hydro and marine power contributed an estimated 9.1% of world electricity generation in 2014. This also represents a notional saving in carbon dioxide emissions of 1.3 gigatonnes, which is about twice what pours from the exhausts of the world airlines.

Markets mature

“Once again in 2014, renewable made up nearly half the power capacity added worldwide,” said Achim Steiner, executive director of UNEP.

“These climate-friendly energy technologies are now an indispensable component of the global energy mix and their importance will only increase as markets mature, technology prices continue to fall and the need to rein in carbon emissions becomes ever more urgent.”

But, according to scientists backed by the Carnegie Institution, there is much more that could be done. A team led by Earth system scientists Rebecca Hernandez, now of the University of California Berkeley, reported in Nature Climate Change that solar energy alone could meet the demands of the state of California in the US up to five times over.

Solar power systems based on photovoltaics could generate up to 15,000 terawatts of energy a year. And mirror-driven concentrating systems could add another 6,000 terawatt hours.

California – now in the grip of a calamitous drought that has been tentatively linked to climate change triggered by human investment in fossil fuels – is the most populous state in the US. The researchers calculated that more than 27,000 square kilometres of land would be fit for photovoltaic solar construction, and more than 6,000 square kilometres for concentrating solar power.

“Their importance will only increase as markets mature, technology prices continue to fall
and the need to rein in carbon emissions becomes ever more urgent”

But there is a darker side to the story of renewable energy. On the other side of the Rocky Mountains, scientists have been working on the much more complex carbon budget of biofuels, which deliver energy in liquid form.

They count as renewable energy because, although they emit carbon dioxide when burned, they do not, overall, add to the levels of greenhouse gases in the atmosphere. That is because biofuel crops take carbon dioxide from the air to grow their tissues for conversion to fuel, and return the gas through engine exhausts.

But there have been persistent worries. One is that the conversion of food to fuel may not be the most efficient use of cropland.

Destroy ecosystems

The approach remains carbon neutral, as long as farmers exploit existing cropland. But the danger is that farmers might plough up existing grassland, destroy ecosystems, and release ancient stored soil carbon to the atmosphere, to make global warming worse.

Environmental scientist Tyler Lark and colleagues at the University of Wisconsin-Madison report in Environmental Research Letters that, between 2008 and 2012, US farmers ploughed seven million acres of new land for corn and soy for conversion to biofuels intended as renewable energy for motor transport.

In the course of doing so, they could have emitted as much carbon to the atmosphere as 34 coal-burning power stations in one year – or 28 million new cars on the road.

Nearly a quarter of the land converted came from long-standing prairies and ranges, much of it within the Central Plains, from North Dakota to Texas. And much of this was planted with corn intended for conversion to biofuels.

“It mimics the extreme land-use change that led to the Dust Bowl in the 1930s,” Lark says. “We could be, in a sense, ploughing up prairies with each mile we drive.” – Climate News Network

Share This:

Forests can soak up a third of carbon emissions

Forests can soak up a third of carbon emissions

Report commissioned by Prince Charles’s charity says protecting tropical forests could enable them to absorb billions of tonnes of the Earth’s emissions of carbon.

LONDON, 11 April, 2015 − Looking after the world’s tropical forests would be worthwhile in its own right, for the sake of their human and animal inhabitants and their wider effects on the natural world.

But researchers say it would also have a significant bonus. Properly cared for, the forests could cancel out between a quarter and a third of the planet’s carbon emissions.

They argue that it is not just outright destruction of the trees that is the problem, but the ways in which the forests become degraded by the incursion of different forms of development − logging, obviously, but also fires, mining, ranching, roads, and their effect in splitting the huge tracts of forested land into smaller and more isolated patches.

In a report commissioned by Prince Charles, the heir to the British throne, they say deforestation and degradation of the forests may account together for between 14% and 21% (1.4-2.2 gigatonnes of carbon, or GtC; a gigatonne is a billion metric tonnes) of all emissions of carbon, and perhaps even more if tropical peatlands and mangroves are included.

Atmospheric carbon

Against this, the forests absorb almost as much atmospheric carbon as they account for − an annual total of 1.2-1.8GtC, the authors say. But the report argues that simply offsetting the amount of carbon sequestered in this way against the amount emitted is insufficient, for two reasons.

The first is the evidence that human activities are responsible for a significant proportion of CO2 absorption. Second, total emissions are probably much higher than the traditional greenhouse gas (GHG) accounting approach allows.

Taken together, these two factors suggest that slowing damage to the forests and keeping them in the best condition possible is more important than many people have realised.

But the forests continue to suffer damage. The report says: “…it can be argued that the causes and consequences of tropical forest degradation have been given too little attention, with the science now pointing toward degradation being a very significant component both of greenhouse gas emissions and the weakening of forest ecosystems”.

We can act on forests now, therefore buying much-needed time to enable the transformation to a low-carbon economy

It paints a sobering picture of the present situation, saying there is “no sign yet that overall rates of deforestation or degradation are decreasing”. The report says the annual area of global forest lost is about 8.5m hectares.

Rising world demand for timber and wood products, and for farm produce, it says, “will significantly increase pressure on tropical forests over the next few decades”.

The report was commissioned by the Prince’s International Sustainability Unit. In a foreword, Prince Charles writes: “It is an alarming fact that rates of deforestation and degradation continue to rise, and that the underlying causes of this increase are set to become very much more acute…”

But he sounds an encouraging note: “We can act on forests now, therefore buying much-needed time to enable the transformation to a low-carbon economy.”

Considerable uncertainty

There is considerable uncertainty about how much the forests contribute to GHG emissions. In 2012, NASA said that tropical deforestation had accounted for about 10% of human carbon emissions from 2000 to 2005 − a much lower figure than previous estimates.

Forest degradation is often more difficult to detect than deforestation itself, and is almost invisible to satellite monitoring. Research in six tropical countries suggests that degradation by logging can cause significant damage, with GHG emissions on average about 12% of those caused by deforestation.

Together, their impact is serious. The Global Forest Watch online monitoring network says that Brazil lost 5.9% of its forest cover between 2001 and 2012, while Indonesia lost 9.2% over the same timespan. − Climate News Network

Share This:

Woodlands revival adds new piece to carbon cycle puzzle

Woodlands revival adds new piece to carbon cycle puzzle

Growing number of trees on the world’s savanna grasslands helps offset carbon storage concerns caused by depletion of the great rainforests.

LONDON, 9 April, 2015 − Despite continuing concern about the fate of iconic rainforests, new research shows that the world’s forests have stored away an extra 4 billion tonnes of carbon in the last dozen years and the total amount of woodland has increased worldwide since 2003.

The encouraging news comes from Australian scientists, who report in Nature Climate Change that they used a new technique to analyse 20 years of satellite data, to estimate the overall pattern of growth in global vegetation.

The fate of the forests could hardly be more important. The world’s greenery is part of the natural atmospheric cycle, and the notorious greenhouse effect – the steady rise in carbon dioxide levels in the Earth’s atmosphere since the start of the Industrial Revolution and the use of fossil fuels to power economic growth – is in part also a response to land-use change and forest loss. Growth requires atmospheric carbon dioxide, and burning and land clearance releases it.

Biggest headache

So the study by remote sensing scientist Yi Liu, of the Climate Change Research Centre at the University of New South Wales, and colleagues becomes an important contribution to solving the climate scientist’s biggest headache: making sense of the carbon budget.

Accurate climate models depend on accurate assessment of the carbon cycle, and the forests play a critical role. Timber in the forests is essentially carbon in the bank.

And, for once, the news is encouraging. The great rainforests of the Congo and the Amazon may not be doing so well, but grasslands in other parts of the world have become increasingly more wooded, and there has been a massive expansion of forested land in China.

“The increase in vegetation primarily came from a lucky combination of environmental and economic factors, and massive tree-planting projects in China,” Dr Yi Liu says.

“Vegetation increased on the savannas of Australia, Africa and South America as a result of increasing rainfall, while in Russia and former Soviet republics we have seen the re-growth of forests on abandoned farmland. China was the only country to intentionally increase its vegetation with tree-planting projects.”

The Australian scientists are not the only researchers using instruments in high orbit to identify the green shoots of recovery.

“A lot rides on human decisions to slow
climate change. The clock is ticking
for the future of these forests”

Dmitry Shchepashchenko, a researcher at the International Institute for Applied Systems Analysis in Austria, and colleagues report in the journal Remote Sensing of Environment that a cocktail of remote sensing data, UN agency statistics and “crowdsourcing” – help from citizen scientists – has provided new high resolution maps of global forest cover.

This will serve as a basis for other studies, and for economic planning and policy-making. The maps are available on the Geo-Wiki website.

But the overall picture of a greener world remains uncertain. On the same day, scientists backed by the Carnegie Institution in Washington reported in Nature Geoscience that drought damage has already led to widespread forest death, and the toll could be much greater by the 2050s.

They based their study on the condition of the trembling aspen forests of the American southwest during the drought of 2000-2003.

Once again, their work is aimed at improving climate models and calculations of the response of forests to climate change, and could throw new light on the processes at work in forests subjected to water stress.

Drought damage

That is because the arboreal vascular system that transports water from the roots to the leaves is itself damaged by drought. But at what level would drought impose permanent damage on a tree’s physiology?

The Carnegie scientists were able to establish a drought threshold for the trembling aspen (Populus tremuloides), and the drought at the beginning of the century is known to have killed 17% of the species in Colorado.

The research is fundamental: just one study of one species in one region that provides a starting point for further studies, and thus for surer measures of vegetation response to climate change, and ultimately to a better understanding of the carbon cycle.

“Finding the thresholds in plant physiology, after which climate stress causes tree mortality, will allow us to resolve uncertainty over the fate of forest ecosystems in a changing climate,” says the study leader, William Anderegg, a researcher at Princeton Environmental Institute in the US.

“But, most importantly, a lot rides on human decisions to slow climate change. The clock is ticking for the future of these forests.” – Climate News Network

Share This:

Unhappy birthday for UK’s nuclear white elephants

Unhappy birthday for UK's nuclear white elephants

A state-of-the-art British plant designed to re-use spent nuclear fuel so as to cut greenhouse gas emissions is to close after years of what its critics call “commercial and technical failure.”

LONDON, 8 April, 2015 − Re-using uranium and plutonium as fuel for nuclear reactors over and over again to make unlimited quantities of electricity was the nuclear industry’s ambition 25 years ago, and central to its claim to be the solution to climate change.

Once uranium has been mined, enriched and used as reactor fuel it need not be wasted, the industry has argued. After its removal from the reactor so little of the potential energy it contains has been harnessed that the fuel can be reprocessed and used again. It is dissolved in acid, the impurities are removed, its uranium and plutonium are extracted and it starts the cycle again as new fuel.

In the 1980s the industry insisted that investment in the giant reprocessing plants was vital because by the millennium there would be 4,000 nuclear reactors worldwide, with too little uranium to fuel them all. In fact, by the end of the century there were only 434 reactors globally, and much more uranium had been found.

Some governments, including those of the UK, France, Germany and the US, believed the industry’s sales pitch, even though environmental groups like Friends of the Earth and Greenpeace never accepted it. Critics said the cost of building the reprocessing plants was too high, and feared the consequences of producing vast stockpiles of uranium and plutonium which might never be used in reactors.

Public opposition was so great in Europe that some countries, notably Germany, abandoned the idea, but Britain went ahead. The British plant was at Sellafield in Cumbria, north-west England.

Proved right

Martin Forwood, from Cumbrians Opposed to a Radioactive Environment (CORE), said: “We never believed there would be a huge expansion in nuclear energy or that there was any need for reprocessing, We said the discharges of nuclear waste into the Irish Sea that it entailed could not be justified, and we have been proved right.”

Despite many objections the nuclear industry got the UK government to accept reprocessing as essential to ensure future expansion. This spring is the 21st anniversary of the official opening of the Thermal Oxide Reprocessing Plant (THORP) at Sellafield, designed to dissolve both British and foreign spent fuel and retrieve the plutonium and uranium.

It cost £2.85 billion (US$4.25 bn) to build and in its first 10 years it planned to reprocess 7,000 tonnes of spent fuel and make £500 million (US$745 m) profit.

Contracts had been signed in advance with Germany, Japan, Switzerland and other countries with nuclear power stations to reprocess their fuel in England.

But technical faults meant THORP failed to meet its targets, and after a decade only 5,045 tonnes had been reprocessed. The plant’s real profits or losses have never been disclosed.

Despite this doubtful beginning the British government sanctioned another enterprise, a brand new factory to turn the plutonium and uranium that had been produced into new fuel. The idea was to sell it back to the countries that originally owned it, closing the recycling loop.

Unworkable theories

New contracts were signed with Switzerland, Germany and Japan to produce 120 tonnes of MOX fuel (mixed oxides of plutonium and uranium) annually. But unfortunately the British nuclear industry could not translate its theories into practice.

The new plant did not work as planned, producing only 13 tonnes of fuel in ten years. Originally it was said to have cost £280m (US$415m). After Japan’s Fukushima accident it was decided to close the plant. The total loss to the British taxpayer for this failure was later admitted to be £2.2bn (US$3.3bn).

Despite the fact there was now no market or use for the plutonium and uranium it was producing from the spent fuel, the original THORP plant has continued to operate. It was periodically closed after a series of accidents and technical failures, and had been reduced to operating at half its original throughput, but was always given permission to restart, arguing that it still had foreign contracts to fulfill.

As a result Britain now has the world’s largest stockpile of used plutonium, about 100 tonnes of it British and 30 tonnes belonging to other governments. If it were all converted into nuclear weapons it would be enough to destroy all life on Earth.

There are also around 7,000 tonnes of uranium, for which there is currently no use and which must remain under armed guard night and day for fear of terrorist attack.

“Two white elephants don’t make for success at Sellafield”

After years of indecision about how to deal with this unwanted surplus it has been announced that THORP should close in 2018 when all the foreign fuel has been reprocessed. Even after closure it will take years to decommission the plant and remove the waste, so not all of the 800 workers will lose their jobs at once and many will be re-deployed on other parts of the Cumbrian site.

Martin Forwood concludes: “That THORP should have failed so badly at so many levels comes as little surprise to those of us who warned − even before the plant opened − that the economics of the highly complex plant simply did not stack up and that worldwide demand for the uranium and plutonium that THORP would recover had already evaporated.

“Attempts to convert THORP’s plutonium into new fuel in an adjoining plant were equally disastrous…Two white elephants don’t make for success at Sellafield.”

The British government and the Nuclear Decommissioning Authority, which runs the plant on behalf of taxpayers, have never revealed the losses it has incurred.  The government has no policy on what to do with the mountain of unwanted plutonium and uranium.

For accounting purposes, Forwood says, it is still counted as an asset, when in reality it is simply nuclear waste. The nuclear industry’s hopes of saving the planet from climate change by recycling reactor fuel have, he says, been “a complete commercial and technical failure.” − Climate News Network

Share This:

Climate poses new threat to survival of Arabian oryx

Climate poses new threat to survival of Arabian oryx

Global warming is the suspected cause of the series of dry years in Arabia that have brought starvation to a desert species saved from extinction.

LONDON, 7 April, 2015 − One of conservation’s triumphs – the reintroduction of the oryx to the deserts of Arabia – could be at risk because of climate change, according to a new book.

The animal already beautifully adapted by thousands of years of evolution to an arid environment met a problem on its return: even deserts have droughts.

The Arabian oryx had been hunted almost to extinction before a handful were captured in 1962 and flown to Phoenix, Arizona, as the nucleus of a captive breeding programme.

By 1972, the last wild oryx had been captured or killed in Oman, but the bloodline survived in captivity.

The first reintroductions to the wild began in 1982, and numbers began to increase. There were incursions by poachers, but there were more releases.

However, there have been so many dry years over the last two decades − according to Malcolm Smith, once chief scientist for the Countryside Commission in Wales, in his new book, Back from the Brink − that many of the newly-wild oryx have not been able to find sufficient grazing.

Closely monitored

The animal is one of the most closely monitored in the world. Of all recorded deaths, 19% have occurred in fights between males, 13% have been due to poaching, and 65% have been due to starvation.

The succession of particularly dry years in the region might be due to global warming as a consequence of human combustion of fossil fuels.

Since climate simulations seem to predict that, in general, moist regions will get more rain and dry regions will experience ever drier regimes as greenhouse gas levels build up in the atmosphere, things don’t look good for the oryx − although captive populations for the time being remain secure.

Other recently-rescued species may face even leaner times − once again, because of climate change.

Spanish and Portuguese authorities have established safe territories for the Iberian lynx and, by 2013, more than 300 lived wild in Spain, while 150 lynx paced the enclosures in the breeding centres awaiting reintroduction.

But the wild rabbit makes up 90% of the lynx’s diet, and rabbit numbers are limited by hunting and by outbreaks of myxomatosis and rabbit haemorrhagic disease.

There have been fears too, that southern Spain and Portugal may become too hot and dry to sustain the prey, let alone the predator.

Such threats to biodiversity, and to individual animals, are not new. Climate change has in various ways reportedly threatened Arctic marine mammalscreatures of the Borneo forests,  and chimpanzees in isolated woodland in West Africa.

Whole ecosystems that evolved in geographical climate zones may be doomed to sudden and rapid change.

But Malcolm Smith’s book concerns itself only with the choicest last-minute success stories of conservation bodies: with those creatures that were all but gone when the conservationists stepped in.

They were hunted, their habitats had been destroyed, and their ecosystems were always precarious. But climate change was, at the time of rescue, the least of their problems.

Large Blue butterfly (Maculinea arion). Image: PJC&Co via Wikimedia Commons

Large Blue butterfly (Maculinea arion).
Image: PJC&Co via Wikimedia Commons

One instance he explores shows just how intricate the living arrangements of charismatic species can be, and illustrates the finely-balanced play of climate and ecological stability in preserving a species.

The Large Blue butterfly (Maculinea arion) exists in respectable numbers worldwide, but became all but extinct in the UK − with changes in farming practices and land use the suspected causes.

Peculiar lifestyle

Until 1972, nobody quite understood the peculiar lifestyle of the Large Blue. It lays its eggs on the flower bud of the wild herb, thyme. A larva hatches and, after an initial vegetarian diet, falls off the plant. Thereafter, its life depends on just one species of red ant, Myrmica sabuleti.

The Large Blue grub secretes a fluid that somehow suggests that of a red ant queen grub, so the ants take it home and nurse it. The Large Blue caterpillar turns carnivore and, for 10 months, feeds on red ant larvae.

In pupate form, it makes queen ant noises and the ants continue to protect it. It hatches, gets out to the open − still protected by the ants − and flies off. It then has about a week in which to find a thyme flower bud, mate, and lay its eggs.

But the complexities multiply. The thyme flower bud that bears the eggs must be within metres of the right kind of red ant nest, or the larva perishes.

Dependent on temperature

The grass above the ant nest must be closely grazed because the ants’ survival is dependent on temperature, and if the grass grows even a centimetre ground is shaded, the nest temperature drops by 2°C to 3°C, and the ant colony is at risk − along with any parasitic caterpillars in the nest.

So the thyme has to flower at the right time, very near a red ant nest, the herbage has to be closely cropped, and the temperatures have to stay near the optimum.

If anything goes wrong, there are no surviving Large Blue larvae to pupate. If things go well, and too many Large Blue grubs are taken into a colony, the ant larvae are all consumed, and both ants and butterflies perish.

And then there’s the climate question − one that affects almost all insects.

“Overall, butterfly populations have moved northward by about 75km in the last 20 years as overall temperatures have risen,” Smith writes. “They are likely to move yet further.” – Climate News Network

Share This:

Cut carbon now to avoid climate tipping points

Cut carbon now to avoid climate tipping points

The price to be paid for not cutting greenhouse gas emissions could push the planetary climate system closer to irreversible “tipping points”.

LONDON, 3 April, 2015 – An international team of scientists has tried a new approach to addressing the complex argument about the costs of climate change – and, once again, the prediction is that the costs of inaction will be so much greater than paying the bills now.

The researchers − from the UK, Switzerland and the US − conclude that policy-makers must apply the brakes and put a high price on carbon emissions “before it is too late”.

Much of the argument on this issue revolves around the perceived cost of carbon emissions and any tax that should be imposed on fossil fuel use. Social scientists and economists and climate modellers have tried a number of approaches.

One group tried to work out the interval between the burning of fossil fuels and the consequent greenhouse warming, and concluded it could be as little as 10 years.

Other groups have separately tried to calculate the true cost of emitted carbon dioxide. The US government works on the basis of $37 in social costs per tonne emitted, but two US scientists proposed that the true cost in future health and habitat losses was probably six times higher.

“The additional carbon tax that our model recommends can be thought of as an insurance premium levied on society”

And yet another researcher began to examine the costs of petrol, or coal, or methane gas if the long-term economic damage and health costs were factored in, and concluded that these made “expensive” renewables cheap by comparison.

Now researchers from the universities of Exeter in the UK, Zurich in Switzerland and Chicago and Stanford in the US report in Nature Climate Change that they considered the risk that emitted greenhouse gases from fossil fuels would push the planetary climate system closer to what climate scientists call “tipping points.”

These are outcomes that would irreversibly change regional climate patterns, disrupt agriculture, precipitate greater flooding in some places, more sustained droughts in others, and accelerate sea level rise.

And, once again, they find that governments have underestimated the price to be paid by society for carbon dioxide emissions from fossil fuels.

“We are calling on policy-makers to respond to the prospect of triggering future climate tipping points by applying the brakes now and putting a high price on carbon emissions before it is too late,” says one of the authors, Tim Lenton, professor of climate change and earth system science at the University of Exeter.

“The additional carbon tax that our model recommends can be thought of as an insurance premium levied on society to delay irreversible changes in the future.”

The researchers selected five potential tipping points − all of which have separately been in the news recently. They relate to:

The researchers say their act-now, save-future-costs model not only demonstrates the dangers of underestimating the cost of future climate change, but is the first one to emerge from a purely market-based approach. The considerations do not have to be based on moral judgements about sustainability and the wellbeing of future generations. – Climate News Network

Share This:

Climate-driven loss of habitat endangers marine mammals

Climate-driven loss of habitat endangers marine mammals

Global survey of threatened Arctic species warns that conservation won’t work without regulation of greenhouse gas emissions to halt climate change.

LONDON, 2 April, 2015 − Three kinds of whale, six varieties of seal, the walrus and the polar bear all have things in common: they are marine mammals, they depend on the Arctic for survival as species, they are vulnerable, and biologists know surprisingly little about them.

And since the Arctic is warming twice as fast as the rest of the planet, their future could become even more threatened as climate change increases habitat loss.

The stress, so far, is on the word “could”, as the first challenge is to establish the facts.

A global study team led by Kristin Laidre, principal scientist at the University of Washington Polar Science Centre in Seattle, reports in the journal Conservation Biology that marine mammals are “disproportionately threatened and data poor compared with their terrestrial counterparts”.

The narwhal, beluga and bowhead whales, the ringed, bearded, spotted, ribbon, harp and hooded seals, the walrus, and the polar bear are “particularly vulnerable due to their dependence on sea ice”.

Important predators

All these animals make their living on the ice and in waters north of the Arctic Circle, and all are important predators. They are also important to indigenous and settler peoples in the frozen North as many can be legally harvested, and others are iconic tourist attractions. Either way, they help communities survive.

“These species are not only icons of climate change, they are also indicators of ecosystem health, and key resources for humans,” Dr Laidre says. “Accurate scientific data – currently lacking for many species – will be key to making informed and efficient decisions about conservation challenges and trade-offs in the 21st century.”

So the researchers set out on what they believe is the first comprehensive global review of what is known about the populations of these animals, and about the way their local habitats may be changing.

“They need ice to find food, find mates, reproduce, and rear their young. It’s their platform of life.”

The study divided the Arctic into 12 regions and began to look at population numbers and trends, and the local pattern of seasonal change in the ice.

They identified 78 distinct populations of the 11 species, and began to assemble estimates of numbers. These range from millions for the ringed seals to a few hundred for the beluga whales of Ungava Bay in the Canadian Arctic.

In many cases, researchers had too little information even to make a guess about whether local populations of any species were stable, declining or increasing. In their table of the trends of the 11 species in the 78 populations, the word “unknown” occurs more than 60 times.

They also charted profound reductions in ice cover. The sea ice naturally advances each winter, and retreats each spring, but because of global warming driven by human emissions of greenhouse gases released by fossil fuel combustion, the pattern of advance and retreat has changed dramatically. By 2040, according to some projections, the Arctic could be more or less ice-free each summer.

Extended summer

But change is visible now. In most regions, the scientists found that the summer period was extended by between five and 10 weeks. In Russia’s Barents Sea, the summer ice period is now 20 weeks longer – five months – than it was 30 years ago.

This presents a threat to the polar bear, and to the seals on which they feed. “These animals require sea ice,” Dr Laidre says. “They need ice to find food, find mates, reproduce, and rear their young. It’s their platform of life. It is very clear those species are going to feel the effects the hardest.”

On the other hand, the whale species might benefit – at least for a while – from reduced ice cover. Open water could offer a wider feeding range and greater marine productivity, and therefore more food.

The scientists provide a set of general recommendations for biologists, local authorities, government agencies and international organisations concerned with conservation of Arctic marine mammals. They also have a message for the entire planet.

As Dr Laidre says: “We may introduce conservation measures or protected species legislation, but none of those things can really address the primary driver of Arctic climate change and habitat loss for these species. The only thing that can do that is regulation of greenhouse gases.” – Climate News Network

Share This: