Tag Archives: emissions

Boom-or-doom riddle for nuclear industry

Doubling up: solar panels at a nuclear power plant in the Czech Republic. Image: Jiří Sedláček (Frettie) 
Doubling up: solar panels at a nuclear power plant in the Czech Republic.
Image: Jiří Sedláček (Frettie) via Wikimedia Commons

By Paul Brown

The nuclear industry remains remarkably optimistic about its future, despite evidence that it is a shrinking source of power as renewables increasingly compete to fill the energy gap. 

LONDON, 26 July, 2014 − The headline figures for 2014 from the nuclear industry describe a worldwide boom in progress, with 73 reactors presently being built and another 481 new ones either planned or approved.

The World Nuclear Association (WNA) official website paints a rosy picture of an industry expected to expand dramatically by 2030. It says that over the period 1996 to 2013 the world retired 66 reactors, and 71 started operation. Between now and 2030, the industry expects another 74 reactors to close, but 272 new ones to come on line.

This represents a much larger net increase in nuclear electricity production than the basic figures suggest because most of the newer power stations have a bigger capacity than those closing down.

Pipe dream

Detractors of the industry say that these projections are a pipe dream and that nuclear power will not expand at that pace, if at all, and that solar and wind power will grow much faster to fill the energy gap.

Which projection is correct matters enormously because the world is both short of electric energy and needs to replace fossil fuels with low carbon sources of power to save the planet from dangerous climate change. Nuclear energy and renewables such as wind and solar are in competition to fill the gap.

The figures show that nuclear production is currently in decline from a peak in 2006, and is now producing less than 10% of the world’s electricity needs.

World solar capacity, on the other hand, increased by 35% in 2013, and wind power by 12.5% − although, added together, they still do not produce as much power as nuclear.

All the evidence is that wind and solar will continue to grow strongly, and particularly solar, where technological advances and quantity of production means that prices have dropped dramatically.

Costs of producing energy are hard to compare because solar is small and local and dependent on sunshine, while nuclear is large and distant and must be kept on all the time. However, research suggests that solar is already producing cheaper power per kilowatt hour than nuclear, the costs of which have not come down.

Commercial market

Both costs and time seem to be major factors in deciding which technology will gain market share. Nuclear stations are expensive and a long time passes before electricity is produced, making them almost impossible to finance in a normal commercial market. Solar panels, in contrast, can be up and running in days, and wind turbines within weeks.

Historically, nuclear power plants have always been built with government subsidy – a pattern that is continuing across the world. For example, the two countries with the largest number of reactors under construction − China, with 29, and Russia, with 10 − have populations with no democratic say in the matter.

Critics of the WNA figures say that while the claims for reactors planned and proposed might be real, the chances of most of them actually being built are remote.The US is said to have five reactors under construction, five more planned and 17 proposed – but with existing nuclear stations closing because they cannot compete with gas on price, it is unlikely that all of these will be completed by 2030.

The UK, which has a government keen to build nuclear stations, is said to have four stations planned and seven more proposed. The first of these stations was due to be opened by 2017, but work has not yet been started. The earliest completion date is now expected to be 2024, and the rest will follow that.

The delay in Britain is partly because the subsidies offered to French, Chinese and Japanese companies to build the UK reactors are under investigation by the European Commission to see if they breach competition rules.

Massive subsidies

Martin Forward is from the English Lake District, where one of the four nuclear stations is planned, and runs Cumbrians Opposed to a Radioactive Environment. He said: “I cannot see how nuclear has any future in Europe because of cost. Nuclear needs massive subsidies to be financially viable, but these are currently illegal under European law, so it is unlikely that the British ones will be built.

“Even if the government can get over that hurdle, there are many problems to overcome − for example, the designs of the stations have to be finalised. The process could take years, by which time wind, solar and other renewables will have expanded so much it will make nuclear redundant.”

The industry does not accept this, pointing to the US, where utilities hope that all five plants currently under construction will be producing power by 2019.

Siobhan O’Meara, a senior analyst at Nuclear Energy Insider, is one of the organisers of an annual “nuclear construction summit”, the sixth of which is taking place in Charlotte, North Carolina, in October.

She said: “With nuclear new build taking off once again across the globe, it’s never been more critical to finance, plan and deliver your construction programmes on time and budget.”

Time will tell who is right. – Climate News Network

Climate data shows clear signs of warming

Wreckage caused by Super Typhoon Haiyan in the Philippines last year Image: Eoghan Rice, Trócaire/Caritas via Wikimedia Commons
Wreckage caused by Super Typhoon Haiyan in the Philippines last year
Image: Eoghan Rice, Trócaire/Caritas via Wikimedia Commons

By Alex Kirby

Hundreds of scientists from 57 countries have fed evidence into a new report that provides a clear picture of how patterns, changes, and trends of the global climate system show that our planet is becoming a warmer place.

LONDON, 24 July, 2014 − However you view the evidence, whatever set of measurements you examine, the picture that emerges is consistent: the Earth is heating up.

The US National Oceanic and Atmospheric Administration (NOAA) reports: “In 2013, the vast majority of worldwide climate indicators − greenhouse gases, sea levels, global temperatures, etc − continued to reflect trends of a warmer planet.”

This, NOAA says, is the picture painted by the indicators assessed in a report, State of the Climate in 2013, published online by the American Meteorological Society.

Scientists from NOAA’s National Climatic Data Center were the lead editors of the report, compiled by 425 scientists from 57 countries. It provides a detailed update on data collected by monitoring stations and instruments on air, land, sea and ice.

“These findings reinforce what scientists for decades have observed: that our planet is becoming a warmer place,” said the NOAA‘s administrator, Dr Kathryn Sullivan.

Changes tracked

The report tracks patterns, changes, and trends of the global climate system, including: greenhouse gases; temperatures throughout the atmosphere, ocean, and land; cloud cover; sea level; ocean salinity; sea ice extent; and snow cover.

It says greenhouse gases continued to climb, with concentrations of major gases − including carbon dioxide (CO2), methane and nitrous oxide − once again reaching historically high levels. Atmospheric CO2 concentrations rose by 2.8 parts per million (ppm) in 2013 and reached a global average of 395.3 ppm for the year.

Many scientists argue that once CO2 concentrations reach 450 ppm it will be difficult to prevent global average temperatures from rising more than 2°C above their level for most of human history. The present rate of increase suggests that, without drastic emission cuts, that threshold will be reached before mid-century.

Four major independent datasets show that 2013 was among the warmest years on record, ranking between second and sixth, depending upon the dataset used. Sea surface temperatures increased to place 2013 among the 10 warmest on record.

Sea level also continued to rise, in step with a trend of 3.2 ± 0.4 mm per year over the past two decades.

The Arctic went on warming , marking its seventh warmest year since records began in the early 20th century. Record high temperatures were measured at a depth of 20 metres at permafrost stations in Alaska.

The Arctic sea ice extent was the sixth lowest since satellite observations began in 1979. All seven lowest sea ice extents on record have occurred in the past seven years.

Contradictory trends

The Antarctic, too, was consistent, even if only in the apparently contradictory trends it showed. The extent of the sea ice reached a record high for the second year in a row, of 7.56 million square miles on October 1 −  0.7% higher than the previous record high of 7.51 million sq miles in 2012 and 8.6% higher than the record low maximum of 6.96 million sq miles in 1986. But the South Pole station experienced its highest temperature since records began in 1957.

The number of tropical cyclones during 2013 was slightly above average, but the North Atlantic Basin had its quietest season since 1994. However, in the Western North Pacific Basin, Super Typhoon Haiyan had the highest wind speed ever known for a tropical cyclone, with one-minute sustained winds estimated at 196 miles per hour. − Climate News Network

  • State of the Climate in 2013 is the 24th edition in a peer-reviewed series published annually as a special supplement to the Bulletin of the American Meteorological Society.

Win-win way to aid food security and climate

Water pressure: rice fields in China use huge amounts of water Image: Chensiyuan via Wikimedia Commons
Water pressure: rice fields in China use huge amounts of irrigation water
Image: Chensiyuan via Wikimedia Commons

By Tim Radford

Scientists in the US believe they have identified a way to feed billions more people, while at the same reducing the strains and stresses on the environment.

LONDON, 23 July, 2014 − Imagine being able to contain greenhouse gas emissions, make fertilizer use more efficient, keep water waste to a minimum, and put food on the table for the 10 billion people crowded into the planet’s cities, towns and villages by the end of the century.

An impossible dream? Not according to Paul West, co-director and lead scientists of the Global Landscapes Initiative at the University of Minnesota’s Institute on the Environment.

He and research colleagues report in the journal Science that if government, industry, business and agriculture set about choosing the best crops for local conditions and then used resources in the most efficient way, the world could be fed on existing land with the least damage to the global environment.

Fresh thinking

This is thinking big: the global view of immediate and local problems. The researchers selected three key areas with the greatest potential for reducing environmental damage while boosting food supply. They thought about water use, food waste, greenhouse gas emissions and polluting run-off from farmland and where fresh thinking could make the most difference in the most efficient way.

They focused on cotton and the 16 food crops that produce 86% of the world’s calories from 58% of the global cropland area. They identified a series of what they called “global leverage points”, and those countries where application of such thinking could make the biggest difference.

The first challenge is to produce more food on existing land. They see an “agricultural yield gap” − that is, a difference between what soil actually produces and what it could produce− in many parts of the world.

And they point out that, in those places where the gaps are widest, simply to close even half those gaps would produce more than 350 million tonnes of additional grain and supply the energy needs of 850 million people − most of them in Africa, plus some in Asia and eastern Europe.

Half of these gains could be made in just 5% of the total harvested area of these crops. Co-incidentally, 850 million is very roughly the number of people the UN currently estimates to be severely malnourished.

The researchers based all their calculations on existing conditions, while recognising that climate change could force people to think again. But the study identified ways to grow food most efficiently, while at the same limiting the impact on climate.

Forests cleared

Agriculture is responsible for somewhere between 30% and 35% of global greenhouse gas emissions, but much of this is because tropical forests are being cleared for farmland. Methane from livestock and from rice fields supplies much of the rest.

Brazil and Indonesia, with the planet’s largest reserves of forest, are places where one set of actions could make a big difference. China and India, which produce more than half the world’s rice, are others.

China, India and the US between them emit more than half of all oxides of nitrogen from the world’s cropland, and wheat, maize and rice account for 68% of these emissions.

Rice and wheat are the crops that create most demand for irrigation, which in turn accounts for 90% of global water consumption. More than 70% of irrigation happens in India, China, Pakistan and the US, and just by concentrating of more efficient use, farmers could deliver the same yield and reduce water demand by 15%.

Crops now grown as animal food could supply the energy needs of 4 billion people, and most of this “diet gap” is in the US, China and Western Europe.

Wasted food

In addition, between 30% and 50% of all food is wasted, and the waste of animal food is the worst. To discard a kilogram of boneless beef is the same as throwing away 24 kilos of wheat. Waste reduction in the US, China and India alone could provide food for an additional 400 million people.

The paper is not a plan of action, but rather an identification of where the firmest concerted action could make the biggest differences.

“By pointing out specifically what we can do and where, it gives funders and policy makers the information they need to target their activities for the greatest good,” Dr West says.

“By focusing on areas, crops and practices with the most to be gained, companies, governments, NGOs and others can ensure that their efforts are being targeted in a way that best accomplishes the common and critically important goal of feeding the world while protecting the environment.” – Climate News Network

Germany and UK top “Dirty 30” pollution league

Neurath coal-fired plant, Germany, is one of Europe's worst polluters Image: Bert Kaufmann via Wikimedia Commons
Neurath coal-fired plant, in Germany, is one of Europe’s worst polluters
Image: Bert Kaufmann via Wikimedia Commons

By Kieran Cooke

A new report naming the 30 energy plants pumping out most greenhouse gases in the European Union shows that coal-fired facilities are undermining Europe’s long-term targets on emissions reduction.

LONDON, 22 July, 2014 − It’s not the sort of league table that anyone is proud of leading, but a new report on the European Union’s power sector lists the EU’s 30 most polluting energy plants – all powered by coal.

Germany and the UK tie for first place overall in “Europe’s Dirty 30” league, each having nine of the most polluting power plants, pumping hundreds of tonnes of climate-warming greenhouse gases into the atmosphere.

In the individual polluting category, the mighty coal-fired Belchatow power plant in Poland tops the league, followed by two facilities in the north of Germany – one at Neurath, and the other at Niederaussen.

The report, which is based on 2013 statistics, is the work of a number of organisations, including Climate Action Network Europe, the World Wildlife Fund and the European Environmental Bureau (EEB).

Low coal prices

The report says the EU’s coal-fired power plants – there are about 350 of them in total – are running at or near full capacity due to relatively low coal prices in Europe compared to other less polluting fuels, such as gas.

Although the EU’s use of coal for power generation has dropped significantly compared to 1990 levels, coal consumption in Europe’s energy sector has been increasing in recent years.

Much of the coal burned in Europe is lignite or hard coal – the most polluting kind. The EU has also been importing large amounts of coal, particularly from the US, where many power producers have been switching to fracked gas – less polluting and, in the US, a cheaper fuel.

The report says the price paid for electricity generated from coal does not reflect the damage it causes to the climate, air quality and human health.

“Europe’s coal addiction is bad for people’s health, bad for the environment, and has no place in our sustainable energy future,” says Christian Schaible, a senior policy officer at the EEB.

Arguing for exemptions

“Significant amounts of emissions could be prevented and reduced if operators would just use state-of-the-art techniques available, instead of arguing for exemptions.

“Environmental standards for power plants should serve to protect the people and the environment in Europe, and must be implemented swiftly to do so.”

The report’s authors point out that recent increases in emissions from the EU’s coal-fired power sector are not due to more coal-fuelled facilities coming on stream, but rather because existing plants are running at full capacity.

Some of these plants are due to be phased out under EU directives on pollution control. The study says this is vital if the EU is to meet its emission reduction targets, centred on cutting overall emissions of greenhouse gases by 40% on 1990 levels by 2030.

But there are signs that short-term economic interests are taking precedence over long-term goals on controlling climate change.

“Current developments in EU energy and climate policy may allow or even incentivise the prolonged operation of coal plants, and thus conflict with the EU’s own climate targets,” the report says. – Climate News Network

China and US boost search for CCS solution

Sunset highlights pollution from a cement factory in Switzerland Image: Stefan Wernli via Wikimedia Commons
Sunset accentuates the pollution from a cement factory in Switzerland
Image: Stefan Wernli via Wikimedia Commons

By Kieran Cooke

Capturing carbon emissions from polluting industries has long been touted as a key way of helping to address climate change, but a new China-US agreement looks like giving much-needed stimulus to development of the technology.

LONDON, 18 July 2014 − For years, the energy companies have been telling us not to worry. Yes, mounting carbon emissions threaten to heat up the world – but technology, particularly carbon capture and storage (CCS), will come to the rescue.

The trouble is that there’s been plenty of talk about CCS and little action, with few projects being implemented on a large scale.

That could be about to change as China and the US, who have been leading the way on CCS research in recent years, this month signed a raft of agreements on tackling climate change  − with half of them focusing on CCS.

The idea behind CCS is to capture at source the carbon emissions from big polluters, such as power utilities and cement plants, and either pipe the CO2 down into deep storage cavities below the Earth’s surface or to recycle the emissions to be used in the production of biofuels.

Despite various geopolitical rivalries and disputes over trade, China and the US have shown increasing willingness to co-operate when it comes to climate change issues.

Worsening impacts

In February this year, the two countries issued a joint statement that highlighted the urgent need for cutbacks in fossil fuel use “in light of the overwhelming scientific consensus on climate change and its worsening impacts”.

The agreements signed in Beijing this month establish collaborative research programmes between China’s state energy firms and US universities on a wide range of CCS-related technologies, including CO2 storage techniques and the combining of captured emissions with algae to produce energy.

The implementation of CCS projects around the world has been plagued by various technical problems, high costs, arguments between energy companies and governments about who pays for research and development, and by regulatory uncertainties in many countries.

The Global CCS Institute, an independent, not-for-profit organisation based in Australia, promotes the use of CCS technology. It says that, at present, the 21 large-scale CCS projects either in construction or in operation around the world are capable of capturing in total up to 40 million tonnes of CO2 annually – the equivalent of taking eight million cars off the road each year.

While the use of CCS is expanding, it’s still not being utilised on anything like the scale needed to result in cutbacks of global greenhouse gas emissions. Most CCS projects are in the US, China and Canada, with Europe lagging very much behind.

Big push needed

Brad Page, the head of the Global CCS Institute, says that if we are to meet the generally-agreed target of limiting warming to 2˚C over 1990 levels by mid-century, there has to be a big push into CCS technology.

“For this low-carbon technology to reach a scale needed to reduce carbon dioxide emissions, more countries need to match progress in places like the US, Canada and China, which are bringing CCS projects online at a robust pace,” he says.

Page adds that CCS must be supported by clear government policies − particularly in Europe, where more flexible funding and policy arrangements are urgently needed.

Earlier this month, the International Energy Agency (IEA) called for the implementation of more CCS projects. The IEA said such projects are particularly important at a time when the use of coal – the most polluting of fuels − is increasing rapidly worldwide. – Climate News Network

Emissions are fuelling Australian droughts

Water depth marker in Lake Albert, South Australia Image: Bidgee via Wikimedia Commons
Water depth marker in the dried out bed of Lake Albert, South Australia
Image: Bidgee via Wikimedia Commons

By Tim Radford

The Australian prime minister may be scathing about climate science, but new research shows that burning fossil fuels is a significant factor in the long-term rainfall decline that is leaving southern regions of the country parched and sweltering.

LONDON, 17 July, 2014 − American scientists have just confirmed that parts of Australia are being slowly parched because of greenhouse gas emissions – which means that the long-term decline in rainfall over south and south-west Australia is a consequence of fossil fuel burning and depletion of the ozone layer by human activity.

Such a finding is significant for two reasons. One remains contentious: it is one thing to make generalised predictions about the consequences overall of greenhouse gas levels, but it is quite another to pin a measured regional climatic shift directly on human causes, rather than some possible as-yet-unidentified natural cycle of climatic change.

The other is contentiously political. Australia’s prime minister, Tony Abbott, has in the past dismissed climate science as “crap”, and more recently has cut back on Australian research spending.

Australia has already experienced a pattern of heat waves and drought – punctuated by catastrophic flooding – and even now, in the Australian winter, New South Wales is being hit by bush fires.

Tom Delworth, a research scientist at the US National Oceanic and Atmospheric Administration, reports in Nature Geoscience that he and a colleague conducted a series of long-term climate simulations to study changes in rainfall across the globe.

Pattern of change

One striking pattern of change emerged in Australia, where winter and autumn rainfall patterns are increasingly a cause of distress for farmers and growers in two states.

The simulation showed that the decline in rainfall was primarily a response to man-made increases in greenhouse gases, as well as to a thinning of the stratospheric ozone layer in response to emissions of destructive gases by human sources.

The computer simulations tested a series of possible causes for this decline, such as volcanic eruptions and changes in solar radiation. But the only cause that made sense of the observed data was the greenhouse explanation.

South Australia has never been conspicuously lush and wet, but decline in precipitation set in around 1970, and this decline has increased in the last four decades. The simulations predict that the decline will go on, and that average rainfall will drop by 40% over south-west Australia later this century.

Dr Delworth described his model as “a major step forward in our effort to improve the prediction of regional climate change”.

In May, scientists proposed that greenhouse gas emissions were responsible for a change in Southern Ocean wind patterns, which in turn resets the thermostat for the world’s largest island.

Australian scientists report in Geophysical Research Letters that they, too, have been using climate models to examine Antarctic wind patterns and their possible consequence for the rest of the planet.

Temperature rise

“When we included projected Antarctic wind shifts in a detailed global ocean model, we found water up to 4°C warmer than current temperatures rose up to meet the base of the Antarctic ice shelves,” said Paul Spence, a researcher at Australian Research Council’s Centre of Excellence for Climate System Science. This temperature rise is twice previous estimates.

“This relatively warm water provides a huge reservoir of melt potential right near the grounding lines of ice shelves around Antarctica,” Dr Spence said. “It could lead to a massive increase in the rate of ice sheet melt, with direct consequences for global sea level rise.”

Since the West Antarctic ice sheet holds enough water to raise sea levels by 3.3 metres, the consequences would indeed be considerable.

“When we first saw the results it was quite a shock,” Dr Spence said. “It was one of the few cases where I hoped the science was wrong.” – Climate News Network

Waste problems still haunt nuclear option

Closing shot: the nuclear popwer plant at San Onofre, California Image: D Ramey Logan/WPPilot via Wikimedia Commons
Closing shot: the nuclear power plant at San Onofre, California
Image: D Ramey Logan/WPPilot via Wikimedia Commons

By Paul Brown

Nuclear power is seen as one of the possible solutions to climate change, but the recent closure of five US power stations is forcing the industry to face up at last to the damaging legacy of how to deal with radioactive waste.

LONDON, 15 July, 2014 − Long-term employment is hard to find these days, but one career that can be guaranteed to last a lifetime is dealing with nuclear waste.

The problem and how to solve it is becoming critical. Dozens of nuclear power stations in the US, Russia, Japan, and across Europe and Central Asia are nearing the end of their lives.

And when these stations close, the spent fuel has to be taken out, safely stored or disposed of, and then the pressure vessels and the mountains of concrete that make up the reactors have to be dismantled. This can take between 30 and 100 years, depending on the policies adopted.

In the rush to build stations in the last century, little thought was given to how to take them apart 40 years later. It was an age of optimism that science would always find a solution when one was needed, but the reality is that little effort was put into dealing with the waste problem. It is now coming back to haunt the industry.

Profitable business

Not that everyone sees it as a problem. A lot of companies view nuclear waste as a welcome and highly profitable business opportunity.

Either way, because of the dangers of radioactivity, it is not a problem that can be ignored. The sums of money that governments will have to find to deal with keeping the old stations safe are eye-wateringly large. They will run into many billions of dollars − an assured income for companies in the nuclear waste business, stretching to the end of this century and beyond.

The US is a prime example of a country where the nuclear waste issue is becoming rapidly more urgent.

The problem has been brought to the fore in the US because five stations have closed in the last two years. The Crystal River plant in Florida and San Onofre 1 and 2 in California have closed down because they were judged too costly to bring up to modern standards. Two more − Kewaunee in Wisconsin andthe  Vermont Yankee plant − could no longer compete on cost with the current price of natural gas and increased subsidies for renewables.

Nuclear Energy Insider, which keeps a forensic watch on the industry, predicts that several other nuclear power stations in the US will also succumb to premature closure because they can no longer compete.

The dilemma for the industry is that the US government has not solved the problem of what to do with the spent fuel and the highly radioactive nuclear waste that these stations have generated over the last 40 years. They have collected a levy − kept in a separate fund that now amounts to $31 billion − to pay for solving the problem, but still have not come up with a plan.

Legal action

Since it costs an estimated $10 million dollars a year to keep spent fuel safe at closed stations, electricity utilities saddled with these losses, and without any form of income, are taking legal action against the government.

The US government has voted another $205 million to continue exploring the idea of sending the waste to the remote Yucca Mountain in Nevada − an idea fought over since 1987 and still no nearer solution. Even if this plan went through, the facility would not be built and accepting waste until 2048.

The big problem for the US, the utility companies and the consumers who will ultimately pay the bill is what to do in the meantime with the old stations, the spent fuel, and the sites. Much of the fuel will be moved from wet storage to easier-to-manage dry storage, but it will still be a costly process. What happens after that, and who will pay for it, is anyone’s guess.

The industry is having a Nuclear Decommissioning and Used Fuel Strategy Summit in October in Charlotte, North Carolina, to try to sort out some of these issues.

But America is not alone. The UK has already closed a dozen reactors. Most of the rest are due to be retired by 2024, but it is likely that the French company EDF, which owns the plants, will try to keep them open longer.

The bill for dealing with existing nuclear waste in Britain is constantly rising and currently stands at £74 billion, even without any other reactors being decommissioned.

The government is already spending £2 billion each year trying to clear up the legacy of past nuclear activities, but has as yet found no solution to dealing with the thousands of fuel rods still in permanent store at power stations.

As with the US, even if a solution is found, it would be at least 2050 before a facility to deal with this highly dangerous waste could be found. By that time, billions of pounds will have been expended just to keep the used fuel from igniting and causing a nuclear meltdown.

It is hard to know how the industry’s finances could stand such a drain on its resources without going bankrupt.

Similar problems are faced by Germany, which is already closing its industry permanently in favour of renewables, and France, with more than 50 ageing reactors.

Japan, still dealing with the aftermath of the Fukushima accident in 2011, is composed of crowded islands where few people will welcome a nuclear waste depository.

Many countries in the former Soviet bloc with ageing reactors look to Russia − which provided them − to solve their problems. But this may be a false hope, as Russia has an enormous unsolved waste problem of its own.

Dramatic rise

In all these countries, the issue of nuclear waste and what to do with it is a problem that has been put off − both by the industry and politicians − as an issue to be dealt with sometime in the future. But the problem is becoming more urgent as the costs and the volume of waste rises dramatically.

Unlike any other form of generation, even dirty coal plants, getting rid of nuclear stations is no simple matter. To cleanse a nuclear site so that it can be used for another industrial use is difficult. Radioactivity lasts for centuries, and all contamination has to be physically removed.

For many critics of the industry, the nuclear waste issue has always been a moral issue − as well as a financial one − that should not be left to future generations to solve. The industry itself has always relied on its continuous expansion, and developing science, to deal what it calls “back end costs” at some time in the distant future.

But as more stations close, and fewer new ones are planned to raise revenue, putting off the problem no longer seems an option, either for the industry or for the governments that ultimately will have to pick up the bill. – Climate News Network

Europe faces deadly cost for climate inaction

Smoke from Russian forest fires obscures the Sun in 2010 Image: Ximonic, Simo Räsänen via Wikimedia Commons

Smoke from Russian forest fires obscures the Sun in 2010
Image: Ximonic, Simo Räsänen via Wikimedia Commons

By Tim Radford

A failure to act to reduce the impacts of climate change could cost Europe dear in lives lost and economic damage, according to a European Commission study.

LONDON, 13 July 2014 − Inaction over climate change costs lives. And in the case of European inaction, it is estimated that this could one day cost 200,000 lives a year.

That is the warning in a new European Commission (EC) study, which also says that failing to take the necessary action could burn 8,000 square kilometres of forest, and commit European taxpayers to at least €190 billion (US$259 bn) a year in economic losses.

Flood damage, too, could exceed €10bn a year by 2080, while the number of people affected by droughts could increase sevenfold, and coastal damage from sea level rise could treble.

The study weighs the bleak consequences of inaction. Scientists considered what would happen if the politicians and players on the continent worked with international partners to constrain global warming to a 2°C rise, or alternatively took no action and allowed global temperatures to soar to 3.5°C. They analysed the impact of climate change in agriculture, river floods, coasts, tourism, energy, droughts, forest fires, transport infrastructure and human health.

All involved in the research emphasised that their projections were conservative – that is, they were underestimates – and imagined a planet 60 years from now that was occupied by its present population, at its present state of economic growth. In a more populated, more developed world, the losses would be hugely greater.

Probable underestimates

The biggest and most obvious cost was to human health: premature death – from heat stress or other climate-related impacts – would account for €120 billion; coastal losses would claim €42 billion and agriculture €18bn. The worst-hit regions would be southern and south central Europe, which would bear 70% of the burden; northern Europe would experience the lowest.

If the world keeps temperature rise to the current international target of 2°C, there will still be huge costs, but the constraint would knock at least €60 billion off the overall bill. It would save lives too,  reducing the notional premature death toll by 23,000, and would burn only about 4,000 square kilometres of forest.

Calculations such as these − which are aids to political and economic planners, and intended to spur forthcoming political action − are uncheckable, but they are also almost certainly underestimates. They take no account of losses of, for example, biodiversity, on which it is impossible to place a value, and they do not include the consequences of catastrophic tipping points, such as the melting of Arctic ice.

Connie Hedegaard, the EC’s Commissioner for Climate Action, said: “No action is clearly the most expensive solution of all. Why pay for the damages when we can invest in reducing our climate impacts and becoming a competitive low-carbon economy?

“Taking action and taking a decision on the 2030 climate and energy framework  in October will bring us just there, and make Europe ready for the fight against climate change.” – Climate News Network

Bold pathways point to a low-carbon future

Brighter future? Sunrise over a wind farm in the Cambridgeshire Fens, UK Image: David Clare/Climate News Network
Brighter future? Sunrise over a wind farm in the Cambridgeshire Fens, UK
Image: David Clare/Climate News Network

By Alex Kirby

The positive message from a scientific report for the UN Climate Summit is that the tough task of cutting CO2 emissions to limit global temperature rise to below 2°C is definitely achievable by following a set of bold, practical steps.

LONDON, 11 July 2014 − Scientists often hesitate to give a cut-and-dried, yes-or-no answer when asked how serious climate change is going to be, and whether the world can still escape significant damage.

Surprisingly, perhaps, a report prepared for a UN conference in September is unequivocal. Yes, it says − the worst is not bound to happen.

The good news is that the world can keep climate change within what are thought to be acceptable limits. The less good news is that while it is possible, it certainly won’t be easy.

The report shows how the countries that emit the most greenhouse gases (GHGs) can cut their carbon emissions by mid-century to prevent dangerous climate change. Prepared by independent researchers in 15 countries, it is the first global co-operation to identify practical pathways to a low-carbon economy by 2050.

The Deep Decarbonisation Pathways Project (DDPP) report is an interim version prepared for the UN Climate Summit to be held in New York on 23 September. The full DDPP report will be ready in the spring of 2015.

Dangerous change

The UN Secretary-General, Ban Ki-Moon, said the report tried to show how countries could help to achieve the globally-agreed target of limiting temperature rise to below 2°C. “Ambitious national action is critical to averting dangerous climate change,” he said. “This report shows what is possible.”

The report aims to help countries to set bold targets in the run-up to the UN climate talks to be held in Paris in 2015.

The work is led by the Sustainable Development Solutions Network (SDSN), an initiative of Columbia University’s Earth Institute for the UN, and the Institute for Sustainable Development and International Relations (IDDRI), a policy research institute based in Paris.

Jeffrey Sachs, the director of the SDSN, said the world had committed itself to limit warming to below 2°C, but not to practical ways of achieving that goal.

He said: “This report is all about the practicalities.  Success will be tough – the needed transformation is enormous – but is feasible, and is needed to keep the world safe for us and for future generations.”

“The issue is to convince the world that the future is as important as the present”

Fatih Birol, chief economist of the International Energy Agency, said: “The issue is to convince the world that the future is as important as the present. Paris 2015 may well be our last hope.”

Despite the global agreement to stay below 2°C, the world is on a path that, without action, will lead to an increase of 4°C or more. The Intergovernmental Panel on Climate Change said in its Fifth Assessment Report, known as AR5, that such a rise might exceed the world’s ability to adapt.

It said that a 4°C rise could endanger harvests and cause drastic sea-level rise, spread of diseases, and the extinction of ecosystems.

Some leading climate scientists − including NASA’s former chief climate scientist, Professor James Hansen, who is now at Columbia University − say that even a 2°C rise would be very dangerous. But many politicians regard it as an essential commitment.

The 15 national pathways examined in the report all show the importance of three factors for achieving radically lower carbon emissions.

The first is greatly increased efficiency and conservation in all energy use.

Renewable sources

The second factor is taking the carbon out of electricity by using renewable sources, “such as wind and solar, as well as nuclear power, and/or the capture and sequestration of carbon emissions from fossil-fuel burning”.

Nuclear energy still attracts widespread and determined opposition, and carbon capture and sequestration (trapping CO2 emissions and storing them underground or beneath the sea floor) has not yet proved that it can work on a commercial scale.

The third factor involves replacing fossil fuels in transport, heating and industrial processes with a mix of low-carbon electricity, sustainable biofuels, and hydrogen.

The authors say their interim report shows the critical long-term importance of preparing national deep decarbonisation plans for 2050.

Emmanuel Guerin, the DDPP’s senior project manager, said the pathways were crucial to shaping the expectations of countries, businesses and investors. − Climate News Network

Gene machinery helps plants handle CO2 rise

 

The mouse-ear cress (Arabidopsis thaliana) provides vital scientific clues Image: Alberto Salguero Quiles via Wikimedia Commons
Mouse-ear cress (Arabidopsis thaliana) provides valuable scientific clues
Image: Alberto Salguero Quiles via Wikimedia Commons

By Tim Radford

The discovery of how plants respond to increasing levels of carbon dioxide in the atmosphere could provide agricultural scientists with new tools to engineer crops that can deal with droughts and high temperatures.

LONDON, 10 July, 2014 − Biologists in the US have identified the genetic machinery that tells a plant how to respond to more carbon dioxide caused by the burning of fossil fuels.

Four genes from three different gene families together control the density of stomata, or breathing pores, on the foliage of the healthy plant. As carbon dioxide levels in the atmosphere rise, plants respond and make fewer stomata.

That means they can detect a gradual change in the levels of a vital gas – a change from 280 parts per million 200 years ago to 400 parts per million now – and change their plumbing arrangements.

In theory, more carbon dioxide in the atmosphere should be better for plant fertility, and the reduction in stomata means that they should use water more economically. Water is a big expense for the growing plant.

Lose water

“For each carbon dioxide molecule that is incorporated into plants through photosynthesis, plants lose about 200 molecules of water through their stomata,” says Julian Schroeder, professor of biological sciences at the University of California San Diego, who led the team that reports in Nature  journal.

“Because elevated CO2 reduces the stomatal density in leaves, this is at first sight beneficial for plants, as they would lose less water. However, the reduction in the number of stomatal pores decreases the ability of plants to cool their leaves during a heat wave via water evaporation. Less evaporation adds to heat stress in plants, which ultimately affects crop yield.”

Quite how crops will respond to a greenhouse gas world has been exercising field biologists, agronomists and government planners for decades.

Plants respond to warmth and to plentiful carbon dioxide. But, as researchers found in April this year, that may not make crops more nourishing. It would be possible to have vigorous growth but lower protein yields in, for example, fields of wheat.

There is a second unresolved question: a warmer world will mean more evaporation, more rainfall in some regions, and greater aridity in others − not helpful to productive farming.

A third challenge is that extremes of heat in the growing season can have a catastrophic effect on the harvest later in the year.

But the San Diego research may, in the end, help tomorrow’s farmers. The study shows that when their test species Arabidopsis thaliana – a little mustard plant also known as mouse-ear cress − senses a rise in atmospheric levels of CO2, it increases the levels of a peptide hormone that alters the genetic machinery in the skin of growing leaves, and blocks the formation of stomata.

The challenge was to identify all the proteins involved, and the genes that are at work.

Plant health

“This change causes leaf temperature to rise because of a decrease in the plant’s evapotranspirative cooling ability, while simultaneously increasing the transpiration efficiency of plants,” the report says. “These phenomena, combined with the increasing scarcity of fresh water for agriculture, are predicted to dramatically impact on plant health.”

The more researchers know about the physiological response of a growing thing, the more confidently they can predict how it will react to changing conditions, the better they will be able to advise farmers on the plants to sow, and the more likely it is that they will be able to breed new strains that can adapt to new conditions.

“At a time when the pressing issues of climate change and inherent agronomic consequences which are mediated by the continuing atmospheric rise of CO2 are palpable, these advances could become of interest to crop biologists and climate change modellers,” said molecular biologist Cawas Engineer, lead author of the paper. – Climate News Network