Tag Archives: emissions

Climate and economy fan flames in Spain

A swathe of forest destroyed by wildfire in northern Spain Image: DM Molina Terrén via Wikimedia Commons
Burn scars: a swathe of forest destroyed by wildfire in northern Spain
Image: DM Molina Terrén via Wikimedia Commons

By Tim Radford

The combined forces of climate, economic and social change are leaving Spain increasingly exposed to the damaging and costly effects of wildfires.

LONDON, 21 August, 2014 – Climate change is gradually turning Spain into a fire zone – but it’s also the change in the economic climate that is inflaming the situation.

A research group reports in the journal Environmental Science and Policy that a mix of factors is behind the rise in both the numbers of forest fires and the areas of land scorched over the last 40 years.

Vanesa Moreno, a researcher in the geography department at the University of Alcalá in Madrid, and colleagues studied the pattern of fires in Spain from 1968 to 2010.

Natural outbreaks

Although Spain, like much of southern Europe, is expected to become more arid with global warming, and although some Mediterranean vegetation is adapted to − and even benefits from − natural fire outbreaks, the picture is not a simple one.

In the moister Atlantic north-west of the country, there are two fire seasons − at the end of winter, and in the summer. In the Mediterranean region, fires are more frequent in the long, hot summer.

Climate change, with more prolonged droughts and rising temperatures, is certainly a driving force, but another factor has been the way the land is now used.

Increasingly, agriculture has intensified and old customs have withered away. Traditional shepherding practices once relied on using fire to keep pastures clear, and, as these practices were abandoned, the risk of accidental scrub and bush and forest fire fell.

But at the same time, like everywhere else in the world, people began to abandon the rural landscape and move to the cities, which in turn means more uncontrolled vegetation growth, more tinder and dried leaves to ignite, and a greater risk of forest fire once more.

Additionally, there have been new reforestation policies, and new plantations for pulp and paper, so that there is more forest to catch fire.

Woodland now covers 37% of the 493,000 square kilometres under study, and the animal population per sq km has fallen from 45 sheep, goats or cattle to a mere 12. So social change, too is fuelling the fire hazard.

Alarming number

Across the Atlantic, from Alaska to California, wildfires are on the increase. Europe, too, has this summer been hit by an alarming number of fires. But knowledge is power, and the Spanish know what to expect.

Moreno says: “Management has evolved and become more effective through the acquisition of fire suppression resources, professional training, research, the introduction of technologies and prevention − something that has got a lot of attention in recent years.” says Moreno.

But that does not mean the fire situation is under control. “The occurrence of several fires at the same time means that resources and personnel have to be split, and extinguishing fires takes more time,” Moreno says.

“In this regard, the economic crisis has caused the workforce to be cut, which could reduce fire extinguishing ability.” – Climate News Network

Antarctic warming could accelerate sea level rise

Warming would cause more Antarctic ice to break off and melt Image: PIK/R.Winkelmann
Rising concern: warming would cause more Antarctic ice to break off and melt
Image: PIK (R.Winkelmann)

By Alex Kirby

An international study says warming is affecting not only the Arctic but also the Antarctic – and that could significantly raise global sea levels much faster than previously predicted.

LONDON, 20 August, 2014 − The effect of climate change on the world’s two polar regions looks like a stark contrast: the Arctic is warming faster than most of the rest of the Earth, while most of Antarctica appears to remain reassuringly locked in a frigid embrace.

But an international scientific team says the reality is quite different. The Antarctic is warming too, it says, and the southern ice could become the main cause of global sea level rise during this century − far sooner than previously thought.

The study, led by the Potsdam Institute for Climate Impact Research (PIK) in Germany, found that ice discharge from Antarctica could contribute up to 37 centimetres to global sea levels by 2100.

Computer simulations

The study is the first comprehensive estimate of the full range of Antarctica’s potential contribution to global sea level rise based on physical computer simulations. It combines state-of-the-art climate models and observational data with various ice models.

The results of the study − published in the European Geosciences Union’s journal, Earth System Dynamics − reproduce Antarctica’s recent contribution to sea level rise, as observed by satellites over the last two decades.

“If greenhouse gases continue to rise as before, ice discharge from Antarctica could raise the global ocean by an additional 1 to 37 centimetres this century,” says the study’s lead author, Anders Levermann, PIK professor of dynamics of the climate system.

“Science needs to be clear about the uncertainty,
so that decision-makers can consider the potential implications . . .”

“This is a big range – which is exactly why we call it a risk. Science needs to be clear about the uncertainty, so that decision-makers on the coast and in coastal mega-cities like Shanghai or New York can consider the potential implications in their planning processes.”

The scientists analysed how rising global average temperatures resulted in a warming of the ocean around Antarctica, influencing the melting of the Antarctic ice shelves.

Antarctica currently contributes less than 10% to global sea level rise and is a relatively minor player in comparison with the impact of the oceans’ increasing thermal expansion and the melting of glaciers.

But the major contributors to future long-term sea level rise are expected to be the huge volumes of ice locked up in Greenland and the Antarctic ice sheets. The marine ice sheets in West Antarctica alone could raise sea level by several metres over a period of several centuries.

The study’s computed projections for this century’s sea level contribution are significantly higher than the upper end of the latest projections by the Intergovernmental Panel on Climate Change. These suggest a probable rise by 2100 of around 60cm, although other estimates put the figure almost twice as high.

Even if governments can agree and enforce strict climate policies limiting global warming below the international target level of a maximum 2°C increase, Antarctica’s contribution to global sea level rise is expected still to range from 0 to 23cm this century.

Critical input

A co-author of the study, Robert Bindschadler, from the NASA Goddard Space Flight Center, said: “This paper is a critical input to projections of possible future contributions of diminishing ice sheets to sea level by a rigorous consideration of uncertainty of not only the results of ice sheet models themselves but also the climate and ocean forcing driving the ice sheet models.

“Billions of dollars, euros, yuan, etc, are at stake, and wise and cost-effective decision-makers require this type of useful information from the scientific experts.”

But major modeling challenges still remain. Datasets of Antarctic bedrock topography, for instance, are still inadequate, and some physical processes of interaction between ice and ocean cannot yet be sufficiently simulated.

The team also emphasises that the study’s results are limited to this century, while all 19 of the comprehensive climate models used show that the impacts of atmospheric warming on Antarctic ice shelf cavities will hit with a time delay of several decades.

However, Levermann says: “Earlier research indicated that Antarctica would become important in the long term. But pulling together all the evidence, it seems that Antarctica could become the dominant cause of sea level rise much sooner.” − Climate News Network

Health alert over fracking’s chemical cocktails

Gas wells at a fracking site in the US state of Pennsylvania Image: Gerry Dincher via Wikimedia Commons
Deep concerns: gas wells at a fracking site in the US state of Pennsylvania
Image: Gerry Dincher via Wikimedia Commons

By Tim Radford

Scientists in the US have established that some chemicals used in the controversial process of fracking to extract gas and oil could represent health and environmental hazards.

LONDON, 19 August, 2014 − Fracking is once again in trouble. Scientists have found that what gets pumped into hydrocarbon-rich rock as part of the hydraulic fracture technique to release gas and oil trapped in underground reservoirs may not be entirely healthy.

Environmental engineer William Stringfellow and colleagues at Lawrence Berkeley National Laboratory and the University of the Pacific told the American Chemical Society meeting in San Francisco that they scoured databases and reports to compile a list of the chemicals commonly used in fracking.

Such additives, which are necessary for the extraction process, include: acids to dissolve minerals and open up cracks in the rock; biocides to kill bacteria and prevent corrosion; gels and other agents to keep the fluid at the right level of viscosity at different temperatures; substances to prevent clays from swelling or shifting; distillates to reduce friction; acids to limit the precipitation of metal oxides.

Household use

Some of these compounds – for example, common salt, acetic acid and sodium carbonate – are routinely used in households worldwide.

But the researchers assembled a list of 190 of them, and considered their properties. For around one-third of them, there was very little data about health risks, and eight of them were toxic to mammals.

Fracking is a highly controversial technique, and has not been handed a clean bill of health by the scientific societies.

Seismologists have warned that such operations could possibly trigger earthquakes, and endocrinologists have warned that some of the chemicals used are known hormone-disruptors, and likely therefore to represent a health hazard if they get into well water.

Industry operators have countered that their techniques are safe, and involve innocent compounds frequently used, for instance, in making processed food and even ice-cream.

But the precise cocktail of chemicals used by each operator is often an industrial secret, and the North Carolina legislature even considered a bill that would make it a felony to disclose details of the fracking fluid mixtures.

So the Lawrence Berkeley team began their research in the hope of settling some aspects of the dispute.

Real story

Dr Stringfellow explained: “The industrial side was saying, ‘We’re just using food additives, basically making ice-cream here.’ On the other side, there’s talk about the injection of thousands of toxic chemicals. As scientists, we looked at the debate and asked, ‘What’s the real story?’”.

The story that unfolded was that there could be some substance to claims from both the industry and the environmentalists. But there were also caveats. Eight substances were identified as toxins. And even innocent chemicals could represent a real hazard to the water supply.

“You can’t take a truckload of ice-cream and dump it down a storm drain,” Dr Stringfellow said. “Even ice-cream manufacturers have to treat dairy wastes, which are natural and biodegradable. They must break them down, rather than releasing them directly into the environment.

“There are a number of chemicals, like corrosion inhibitors and biocides in particular, that are being used in reasonably high concentrations that could potentially have adverse effects. Biocides, for example, are designed to kill bacteria – it’s not a benign material.” – Climate News Network

Mystery over Kazakh nuclear power plans

Sign for a uranium mining operation in southern Kazakhstan Image: Mheidegger via Wikimedia Commons
Sign for a uranium mining operation in southern Kazakhstan
Image: Mheidegger via Wikimedia Commons

By Komila Nabiyeva

Russia intends to build the first thermal nuclear power plant in Kazakhstan, the world’s largest uranium producer. But where it will be in that vast country and who will own it remain unclear.

BERLIN, 18 August, 2014 – As the Russian President, Vladimir Putin, signed the recent deal forming the Eurasian Economic Union with his counterparts from Belarus and Kazakhstan in the Kazakh capital city of Astana, one controversial agreement went relatively unnoticed.

On the same day, May 29, the Russian state nuclear corporation, Rosatom, signed a memorandum of understanding (MoU) with the Kazakh national atomic company, Kazatomprom, on constructing the first nuclear power plant in Kazakhstan.

The MoU lays out intentions of both parties on design, construction, commissioning, operation and decommissioning of a nuclear power plant with water-water energy reactors (VVER) –  that is, water-cooled water-moderated reactors  – with an installed capacity of 300 to 1,200 MW, according to the Rosatom press release. But other vital details about where the plant will be and who will own and operate it remain a mystery.

It seems surprising that Kazakhstan has not had a thermal nuclear plant before, especially as most of Russia’s uranium comes from local mines, which last year provided 38% of the world’s supply. One explanation may be the strength of the public protests against the construction of a nuclear power station.

Experimental reactor

Russia did build an experimental fast breeder reactor near Aktau city on the Caspian Sea in 1973, but it closed in 1999. Since then, the Kazakh government has been keen to build a conventional nuclear station as a replacement.

Russia has close ties with Kazakhstan because the country has been used for Russia’s space programme and nuclear testing. Its vast, flat desert interior was seen as a perfect launch pad. Large areas of what is the world’s largest landlocked country can be isolated without inconveniencing the population of 17 million, most of whom live along the greener border areas of the country.

From the Kazakh point of view, nuclear power is a vital part of the country’s plan to improve its green credentials, launched last year by President Nursultan Nazarbayev. Currently, oil from the Caspian Sea is enriching the government, but is exacerbating climate change.

According to the green plan, Kazakhstan is to increase the share of alternative and renewable energy in electricity generation from less than 1% to 50% by 2050. Nuclear power is part of the planned energy mix. .

The construction of the nuclear power plant will involve Russian loans, but the question of its ownership remains open, Vladislav Bochkov, from the Rosatom press office, told the Climate News Network.

The signed document mentions the possibility of production of atomic fuel or its components in Kazakhstan, as well as co-operation on nuclear waste management and the personnel training. The official intergovernmental agreement is to be signed by the end of 2014, Bochkov said.

Site ambiguous

The site of the plant also remains ambiguous. In media interviews, Rosatom said the plant will be constructed in Kurchatov, a city in north-east Kazakhstan, near the former Soviet Semipalatinsk nuclear test site.

However, in an interview on the Astana TV channel, the head of Kazatomprom, Vladimir Shkolnik, said that two nuclear power plants may well be constructed − one in Kurchatov, and one near the Balkhash Lake in south-east Kazakhstan.

It is clear that Kazakhstan has been keen on building nuclear plants for some years. “The demand for cheap nuclear energy, in the foreseeable future, will only increase,” President Nazarbayev said during his annual address in January this year.

“We have to develop our own fuel industry
and build nuclear power stations”

“Kazakhstan is the world leader in uranium production. We have to develop our own fuel industry and build nuclear power stations”

Today, Kazakhstan generates more than 80% of its electricity from coal. However, as a result of the country’s outdated coal mining and production industry, its emissions have risen 40% since 2006.

In its 2010 submission to the UN Framework Convention on Climate Change, Kazakhstan pledged, on a voluntary basis, that by 2020 it would reduce its greenhouse gas emissions to 15% below its 1992 levels.

Dmitry Kalmykov, director of EcoMuseum, a Kazakh environmental NGO, said: “From the economic point of view, the interest of the Kazakh government to develop nuclear power is understandable. The country leads in uranium production, it used to have parts of the production cycles of atomic fuel, and even the personnel since Kazakhstan still runs four testing reactors.

“Yet, so far, the government has not provided any information on how economically rational it is in comparison with coal or renewable energy.”

Kalmykov said the choice of Kurchatov in the north-east as the site for the plant appears questionable. He said: “We already have, 150-160 km from Kurchatov, two gigantic Ekibastuz coal power stations, the biggest in the country, and another one nearby. Everybody knows in Kazakhstan that there is oversupply of energy in the north. The biggest need for energy is in the south.”

Kazakhstan’s electricity grid system was historically divided into three networks, with two in the north connected to the Russian system and the southern one connected to the Central Asian energy system.

Petr Svoik, an opposition politician and analyst in Kazakhstan, wrote on the Forbes.kz website that a nuclear power plant in Kurchatov makes little sense for the energy needs of Kazakhstan. “Its only advantage is convenience of energy export to Russia,” he said. “In fact, it will be a Russian nuclear power plant on the Kazakh territory.”

Expand capacity

In an interview with the Climate News Network, Svoik said the MoU on constructing a nuclear power plant gives Kazatomprom a chance to expand its capacity from uranium mining and first processing to the company dealing with the full nuclear cycle, including the atomic fuel production.

Since 1973, the Ulba metallurgical plant in the east of Kazakhstan has been producing nuclear fuel pellets from Russian-enriched uranium.

Vladimir Slivyak, from the Russian environmental group Ecodefense, said Rosatom constructs only 1200 MW reactors, whereas Kazakhstan needs less capacity.

“The only exception is a very old reactor built during the Soviet times in the 1980s,” he said. “Formally, Rosatom has smaller projects, but they never developed to the implementation stage. So it cannot just start constructing a smaller reactor, but would need five to six years for the equipment to be developed.”

Sending a signal

Slivyak said Russia might be sending a signal to the West that it has other partners, despite the economic sanctions.

He said: “In such a tight political situation, with a conflict with the Ukraine and a number of countries introducing sanctions against the country, the Russian government in response demonstrates its establishment of a new trade-economical union with some countries from the former Soviet Union. To give it weight, a range of bilateral agreements is signed, and the MoU on construction of a power plant is one of them.”

Slivyak said he was sceptical about the MoU because plans about constructing the nuclear power plant in Kazakhstan by Russia have appeared in the news over the last 10 years, but never reached the stage of the official intergovernmental agreement or a contract.

On being asked by the Climate News Network for an interview, the Kazatomprom press office said to contact Rosatom for comments, as “the memorandum was their initiative”. However, the Rosatom press office declined to provide the MoU text. – Climate News Network

  • Komila Nabiyeva is a Berlin-based freelance journalist, reporting on climate change, energy and development.

Human factor speeds up glacial melting

Glaciers such as Artesonraju in the Peruvian Andes are melting at record rates Image: Edubucher via Wikimedia Commons
Glaciers such as Artesonraju in the Peruvian Andes are melting at record rates
Image: Edubucher via Wikimedia Commons

By Tim Radford

Scientists simulating changes in mountain glaciers over the last century and a half have established that rates of melting have increased greatly in recent years – and that humans are the main culprits.

LONDON, 17 August, 2014 – The impact of human activity is melting the glaciers in the world’s mountain regions, and is doing so at an accelerating rate.

Ben Marzeion, a climate scientist at the University of Innsbruck’s Institute of Meteorology and Geophysics, Austria, reports with colleagues in the journal Science that they used computer models to simulate changes in the world’s slow-flowing frozen rivers between the years 1851 and 2010. The study embraced all the world’s glaciers except those in Antarctica.

This kind of manipulation allows researchers to play with the possibilities and see, for instance, how much changes in the sunlight patterns, high-level atmospheric changes because of volcanic eruptions, or simply slow cycles of natural weather patterns might be at work in the ice record.

The answers were unequivocal about human impact on the environment. “In our data, we find unambiguous evidence of anthropogenic contribution to glacier mass loss,” Dr Marzeion says.

In retreat

That glaciers are losing mass − retreating uphill, and melting at a faster rate − is not in doubt. A year ago, one group established without any doubt that worldwide, and overall, glaciers are in retreat.

In South America, some glaciers in the Andes are melting at a record rate, while satellite measurements show that the Jakobshavn glacier in Greenland doubled its flow speed between 1997 and 2003, and has doubled it again since 2003.

In Europe, 19th-century landscape painters, pioneer photographers and mountain guides unwittingly made permanent, easily-accessible records of Alpine glacier geography. These now set a baseline for all modern measurements, and researchers have established that the melt is getting faster.

The challenge is to determine how much of this is due to natural causes, and how much to changes in human land use, and the emission of greenhouse gases.

Higher proportion

The Innsbruck team has calculated that around a quarter of all the melting between 1851 and 2010 can be put down to human activity. But that is the overall picture: the proportion gets higher with time. Between 1991 and 2010, the fraction of melting due to human activity rose to two-thirds.

“In the 19th century and first half of the 20th century we observed that glacier mass loss attributable to human activity is barely noticeable, but since then has steadily increased,” Dr Marzeion says. – Climate News Network

Arctic warming blamed for dangerous heat waves

Feeling the heat: a wildfire rages in New Mexico during the 2012 heat wave in the US Image: Kari Greer/USFS Gila National Forest via Wikimedia Commons
Feeling the heat: a wildfire rages in New Mexico during the 2012 heat wave
Image: Kari Greer/USFS Gila National Forest via Wikimedia Commons

By Paul Brown

Giant waves in the jet stream that often governs our weather are changing as the Arctic warms more rapidly − leading to long periods of soaring temperatures that pose major threats to economies and human health.

LONDON, 16 August, 2014 − Few people have heard of Rossby waves and even less understand them, but if you are sweltering in an uncomfortably long heat wave, then they could be to blame.

New discoveries about what is going on in the atmosphere are helping to explain why heat waves are lasting longer and causing serious damage to humans and the natural world. These events have doubled in frequency this century, and the cause is believed to be the warming of the Arctic.

The weather at the Earth’s surface is often governed by high winds in the atmosphere, known as jet streams. In 1939, Carl-Gustaf Arvid Rossby, a Swedish-born America meteorologist, discovered waves in the northern jet stream that were associated with the high and low pressure systems at ground level that form daily weather patterns.

Jet streams travel at up to 200 kilometres an hour, frequently wandering north and south − with cold Arctic air to the north, and warmer air to the south.

Rapid variations

When the jet stream develops Rossby waves and they swing north, they suck warm air from the tropics to Europe, Russia or the US. And when they swing south, they do the same thing with cold air from the Arctic. The waves constantly change shape, and so cause rapid variations in the weather.

But new research, published in the Proceedings of the National Academy of Sciences of the USA, has discovered a tendency for these waves in the jet stream to get much bigger and to get stuck – particularly in July and August. This causes heat waves that last not just for a few days but for weeks.

This is a serious health and economic threat. A recent example is the record heat wave in the US that hit corn farmers and worsened wildfires in 2012.

Close study of records shows that, from 1980 to 2003, there were two such heat wave events every four years on average. From 2004-07, there were three events, and between 2008-11 there were five.

Ice shrinking

Theory and the new data both suggest a link to processes in the Arctic. Since 2000, the Arctic has been warming about twice as fast as the rest of the globe. One reason for this is that ice is rapidly shrinking in the White Sea − a southern inlet of the Barents Sea on the north-west coast of Russia – and so less sunlight gets reflected back into space, while the open ocean is dark and hence warms more.

“This melting of ice and snow is actually due to our lifestyle of churning out unprecedented amounts of greenhouse gases from fossil fuels,” says Hans Joachim Schellnhuber, co-author of the study and founding director of the Potsdam Institute for Climate Impact Research.

As the Arctic warms more rapidly, the temperature difference to other regions decreases. Yet temperature differences are a major driver of the atmospheric circulation patterns that in turn rule our weather.

“The planetary waves topic illustrates how delicately interlinked components in the Earth system are,” Schellnhuber concludes: “And it shows how disproportionately the system might react to our perturbations.” – Climate News Network

Top 20 oil projects put investors’ billions at risk

An oil extraction platform in the North Sea, off the coast of Norway Image: Håkon Thingstad via Wikimedia Commons
An oil extraction platform in the North Sea, off the coast of Norway
Image: Håkon Thingstad via Wikimedia Commons

By Alex Kirby

An oil industry thinktank warns that high-cost extraction projects failing to match oil demand with global emissions reduction targets could waste US$91 billion of investors’ money over the next decade. 

LONDON, 15 August 2014 – If you want a safe bet, don’t invest in some of today’s tempting oil and gas projects. That’s the message from a UK-based financial thinktank that aims to align the global energy market with climate reality.

The report, by the not-for-profit Carbon Tracker Initiative (CTI), warns that US$ 91 billion of investors’ money risks going to waste over the next decade because of the industry’s plans.

It highlights a top 20 of the world’s most expensive future oil projects being considered for development, and concludes that, to be profitable, some of them will need oil prices to be far higher than today’s levels.

The findings in the report, CTI says, demonstrate the mismatch between continuing oil demand and reducing carbon emissions to limit global warming.

Economic justification

Since an earlier CTI report in May this year, institutional investors have been asking for more details of the economic justification for projects that require high oil prices.

This latest research ranks oil majors according to their capex (capital expenditure) exposure to undeveloped, high-cost projects, and reveals the projects at highest risk.

The companies, CTI says, need to reduce exposure to exploration projects that must earn the highest prices for their oil, and that this is the principle that should determine investment decisions, rather than the simple pursuit of production volume.

“This analysis demonstrates the worsening
cost environment in the oil industry”

All the fields require at least $95 a barrel to be sanctioned, identified by CTI as the key risk level −  the market price required to go ahead with the project, assuming a $15 contingency allowance or “risk premium” on top of the break-even price.

Some projects will need prices above $150 per barrel. The global Brent oil benchmark has ranged between $99 and $114 per barrel over the past 12 months.

Using data from the independent consultants Rystad Energy, CTI finds that BP, ConocoPhillips, ExxonMobil, Chevron, Total, Eni and Royal Dutch Shell are considering investing a total of $357 billion over the next decade on new production in costly and often technically-challenging projects − ranging from Canadian oil sands to deep water finds in the Gulf of Mexico and discoveries in the Arctic.

Both BP and Total have particularly high exposure to deep water and ultra-deep water projects, while ConocoPhillips is heavily exposed to Arctic projects. High carbon-emitting oil sands projects account for 27% and 26% respectively of Shell’s and Conoco’s potential high-cost development spend.

“This analysis demonstrates the worsening cost environment in the oil industry, and the extent to which producers are chasing volume over value at the expense of returns,” said Andrew Grant, CTI analyst.

Projects shelved

Some majors have started cutting already. For example, in the Canadian oil sands sector so far this year, Total and Suncor have shelved the $11bn Joslyn mine project, and Royal Dutch Shell has put on hold its Pierre River project.

With deep-water projects, BP has delayed/cancelled its Mad Dog extension in the Gulf of Mexico, and Chevron is reviewing its $10bn Rosebank project in the North Sea.

In the Arctic, Statoil and Eni have deferred a decision on the $15.5bn Johan Castberg project.

The CTI report says projects that depend on sustained high prices for a return are at risk from a future double hit of falling oil prices and growing climate regulation in an increasingly carbon-constrained world.

Its study in May this year showed that oil prices have twice fallen as low as $40 per barrel in the last decade.

The US Energy Information Administration recently reported that the oil and gas sector has increased borrowing heavily to cover spending and dividends. − Climate News Network

US climate change debate heats up

Skiing areas such as Colorado are being hit by warmer winters Image: DebateLord at Wikimedia Commons
Skiing tourism areas such as Colorado are being hit by warmer winters
Image: DebateLord at Wikimedia Commons

By Kieran Cooke

Groups for and against US government plans for new regulations aimed at cutting greenhouse gas emissions have been slugging it out at a series of heated debates across America.

LONDON, 11 August, 2014 − Achieving progress in cutting back on greenhouse gas emissions and preventing serious global warming is never easy. But just how difficult a task that is became clear at a series of recent meetings across the US held to discuss the Obama administration’s latest plans for tackling climate change.

Those plans, announced in early June by the government’s Environmental Protection Agency, call for substantial nationwide cuts in greenhouse gas emissions.

Power companies − in particular, those operating coal-fired plants − will have to make big adjustments, reducing overall CO2 emissions by 25% on 2005 levels by 2025 and by 30% by 2030.

The EPA-sponsored public meetings, held in four US cities, were packed.

Long overdue

In Denver, in the state of Colorado, representatives of the skiing industry − a vital part of the state’s economy − said the new regulations were long overdue.

Skiing organisations said changes in climate were already happening and the industry was being badly hit, with drier and warmer winters resulting in less and less snow.

But coal mining is also central to Colorado’s economy. One resident of a coal mining community told the meeting: “The environmental extremist war on coal is really a war on prosperity. Coal means families can buy homes and put food on the table.”

The multi-billion dollar US coal industry is training its big guns on the EPA proposals.

Fred Palmer, a representative for Peabody Energy Corporation, the biggest coal producer in the US, told a meeting at the EPA’s HQ in Washington that the government should provide more funds for new technologies such as carbon capture and storage.

“Climate change is an issue we need to deal with in the right way,” Palmer said, “The only way to approach it is with technology, not with command-and-control from Washington.”

Other coal lobbyists have been wading into the fray. The American Coalition for Clean Coal Electricity said the EPA’s emissions cutting programme “threatens to dismantle our nation’s economy, fundamentally alter the American way of life, and severely hamper US energy independence and leadership”.

Groups of campaigners in favour of the EPA proposals demonstrated at the meetings, with the area round the EPA’s Washington office turned into the site of a large green carnival.

Adamantly opposed

Although the Obama administration has a considerable battle on its hands – with many politicians, corporate groups and powerful business organisations adamantly opposed to the new proposals – there are signs that the White House is determined to implement the measures.

Coinciding with the public meetings around the country, the government’s Council of Economic Advisers issued a report saying cutting emissions makes sense economically, as well as environmentally.

For each decade that action on emissions is delayed, costs of meeting reduction targets rise by more than 40%, the report says.

The public mood about the seriousness of climate change and the need to take action seems to back Washington’s stance.

A recent poll carried out by the ABC news network in the US and the Washington Post found that seven out of 10 people think global warming is a serious problem that needs to be tackled – and more than 60% of those questioned wanted action on emissions, even if it means higher energy bills. – Climate News Network

New rules could block biofuel’s alien invaders

The invasive giant reed (Arundo donax) has been approved in the US as a biofuel crop Image: H Zell via Wikimedia Commons
The US approved the invasive giant reed (Arundo donax) as a biofuel crop
Image: H Zell via Wikimedia Commons

By Alex Kirby

Producing biofuel from plants can help to reduce fossil fuel use and climate change emissions, but scientists warn of risks that some species may become unwelcome and damaging invaders.

LONDON, 10 August, 2014 − Researchers in the US have warned those anxious to cut greenhouse emissions to make quite sure that the cure they choose will not turn out worse than the disease.

They have developed a tool that should help to avoid the danger that efforts to address climate change could allow invasive plant species to spread where they are not wanted.

Making fuel from plants avoids using fossil fuels − although it does use land that could otherwise grow crops. But scientists are concerned that plants grown for their energy could damage their new environment.

If a plant grown as a biofuel crop is approved solely on the basis of reducing greenhouse gas emissions, the scientists from the University of Illinois warn that its potential as the next invasive species may not be discovered until it’s too late. So they have drawn up a set of regulatory definitions and provisions.

White list

They also assessed 120 potential bioenergy feedstock taxa (biological classifications of related organisms) and came up with a “white list” of 49 low-risk biofuel plants − 24 native and 25 non-native − from which growers can choose.

Lauren Quinn, an invasive plant ecologist at the university’s Energy Biosciences Institute, and her colleagues set out to create a list of low-risk biofuel crops that can be safely grown for conversion to ethanol. But in the process of doing that, they recognised that regulations were needed to instill checks and balances in the system.

“There are not a lot of existing regulations that would prevent the planting of potentially invasive species at the state or federal levels,” Dr Quinn says.

In approving new biofuel products, she says, the US Environmental Protection Agency (EPA) does not formally consider invasiveness at all – just greenhouse gas emissions related to their production.

“Last summer, the EPA approved two
known invaders . . . despite public criticism”

The report’s co-author, A. Bryan Endres, professor of agricultural law at the university, says: “Last summer, the EPA approved two known invaders, Arundo donax [giant reed] and Pennisetum purpurem [napier grass], despite public criticism.”

The researchers say there is no clear and agreed scientific definition of what “invasive” means, although the UN Convention on Biological Diversity has made a brave attempt, while also broadening the category. It says: “Invasive alien species have devastating impacts on native biota, causing decline or even extinctions of native species, and negatively affecting ecosystems.”

Dr Quinn says: “Our definition of invasive is ‘a population exhibiting a net negative impact or harm to the target ecosystem’ . . . We want to establish guidelines that will be simple for regulators, and informed by the ecological literature and our own knowledge.

“We also need to recognise that some native plants can become weedy or invasive. It’s complicated, and requires some understanding of the biology of these plants.

High risk

“Some of the biofeedstocks currently being examined by the EPA for approval, like pennycress, have a high risk for invasion. Others have vague names such as jatropha, with no species name, which is problematic.

“For example, there are three main Miscanthus species, but only sterile hybrid Miscanthus giganteus types are considered low risk. However, the EPA has approved “Miscanthus” as a feedstock, without specifying a species or genotype.

“That’s fine for the low-risk sterile types, but could mean higher-risk fertile types could be approved without additional oversight.”

Dr Quinn thinks the team’s list of  low-risk feedstock plants will serve to clear up the confusion about plant names. It was developed using an existing weed risk assessment protocol, which includes an extensive list of 49 questions that must be asked about a particular species − based on its biology, ecology, and its history of being invasive in other parts of the world.

Although a plant may be native to a part of the US, it could be considered invasive if it is grown in a different region, Dr Quinn says. “For example, Panicum virgatum is the variety of switchgrass that is low risk everywhere except for the three coastal states of Washington, Oregon and California.

“But future genotypes that may be bred with more invasive characteristics, such as rapid growth or prolific seed production, may have higher risk.” − Climate News Network

Canada puts oil exploitation before forests

A plane drops a water bomb on a forest fire in Ontario, Canada Image: {Per via Wikimedia Commons
A plane drops a water bomb on a forest fire in Ontario, Canada
Image: Per via Wikimedia Commons

By Paul Brown

Having repudiated the Kyoto Protocol on reducing fossil fuel use, Canada is still exploiting tar sands for oil − despite accepting that climate change is destroying its forests.

LONDON, 9 August, 2014 − Detailed evidence that Canada’s vast natural areas are undergoing major changes because of climate change is produced in a new report by Natural Resources Canada.

The government body describes problems with disappearing glaciers, sea level rise, melting permafrost and changing snow and rainfall patterns. One of the country’s most important natural resources, the forests that cover more than 50% of its land area, is under pressure because of pests, fire and drought.

There may, the reports says, be some pluses for Canada in climate change − at least in the short term − because some staple cereal crops will also be able to be grown further north because of warmer weather, assuming that the soil is suitable.

The report, Canada in a Changing Climate, concentrates on impacts and adaptation, but does not mention the causes, or the fact that Canada is now an international pariah in the environmental community because of its exploitation of tar sands for oil.

The country does attempt, for economic reasons, to be more energy efficient, but has repudiated the Kyoto Protocol and international efforts to curb fossil fuel use. The country had accepted a target of cutting emissions on 1990 levels by 5% by 2012, but the government backed out in 2011.

Highest emissions

Average greenhouse gas emissions for oil sands extraction and upgrading are estimated to be 3.2 to 4.5 times as intensive per barrel as for conventional crude oil produced in Canada or the US. If Alberta, where the oil is produced from tar sands, was a country and not a merely a province of Canada, it would have the highest per capita greenhouse gas emissions in the world.

The only mention the report makes of tar sands extraction is the problem caused by its large use of water, and it makes the point that the industry is recycling as much as possible.

A tar sands mine at Mildred Lake, Alberta Image: TastCakes/Janitzky via Wikimedia Commons
A tar sands mine at Mildred Lake, Alberta
Image: TastyCakes/Janitzky via Wikimedia Commons

Mitigation is not on the agenda, as the country’s politicians are intent on exploiting as much of the country’s oil and gas as possible.

A study of forests says that 224,410 people are directly employed in the sector, although it makes up only 1.1% of GDP. About 5% of the forests are damaged annually because of outbreaks of pests and fire. Temperatures in the forest areas have risen far more sharply than on the rest of the planet, with far-reaching consequences for the future, the report says.

In 2009, over three million hectares of forest were destroyed by fire in a single year. The number of fires is expected to increase, with the area being burned being three to five times as much in Western Canada by the end of the century. Large fires are raging again this year, but the quantity of the damage has yet to be assessed.

Severe outbreaks

One of the pests moving north and devastating mature trees is the mountain pine beetle. The beetle is endemic, but is killed by winter temperatures below minus 35˚C, thus limiting its numbers from year to year. However, winter temperatures in many areas now fail to drop below this level, leading to larger and more severe outbreaks of the pest.

A report in 2012 concluded that 18.1 million hectares of forest dominated by mature Lodgepole pine (Pinus contorta) had been affected. Scientists conclude that productivity of the forests will decline rapidly in British Columbia, and thousands of jobs will be lost. Meanwhile, the beetle is continuing to move north and east.

One advantage of the increased temperatures in Canada is that trees can grow further north and higher up mountains than previously, and there is a longer growing season.

Trees that live 100 years cannot migrate fast enough to take advantage, so local governments are going in for assisted migration.

This involves planting the seeds of suitable species 100 to 200 metres above the existing tree line on mountains, and in some cases two degrees of latitude northwards (about 100 miles) of the existing forests into what is currently tundra or scrub. – Climate News Network