Deep concerns as climate impacts on Gulf Stream flow

Deep concerns as climate impacts on Gulf Stream flow

Ocean scientists find evidence of an increasing slowdown in the Atlantic’s “invisible river” that could seriously affect weather and sea levels in the US and Europe.

LONDON, 25 March, 2015 − Climate scientists have once again confirmed an alarming slowdown in the circulation of the Atlantic Ocean − the process that drives the current that warms Europe, and powers the planetary climate.

And this time, they are prepared to say that the changes are recent − and may be linked to global warming.

The Atlantic Conveyor is a great invisible river that flows in two directions at the same time. The equatorial surface waters − warm, and therefore less dense − flow towards the north in the form of the Gulf Stream. Around Greenland, the denser and colder Arctic waters sink to the ocean bottom and begin their progress towards the south.

It is the difference in temperatures that maintains the turnover and keeps the climate engine going.

As a consequence, the two-way traffic of warm and cold water redistributes heat around the planet and keeps Britain and maritime Europe in relatively mild conditions.

But as global average temperatures rise, and the Greenland ice sheet melts, ocean scientists have warned that the speed of the ocean turnover could be put at risk.

Greater weakening

Stefan Rahmstorf, an ocean physicist at the Potsdam Institute for Climate Impact Research in Germany, is lead author of a report in Nature Climate Change that says they now have evidence of a slowdown during the 20th century, and greater weakening since the first alarms 40 years ago about the possible effects of greenhouse emissions.

“It is conspicuous that one specific area in the North Atlantic has been cooling in the past hundred years, while the rest of the world heats up,” Professor Rahmstorf says. “Now we have detected strong evidence that the global conveyor has indeed been weakening in the past hundred years, particularly since 1970.”

The paradox of the Atlantic current is that, in a warmer world, it could slow down or halt, which would deliver uncomfortable consequences for maritime Europe.

Fears of such an effect provided the scenario for the 2004 climate disaster movie, The Day After Tomorrow, which predicated a frozen Britain and a glaciated US.

“Now we have detected strong evidence that the global conveyor has indeed been weakening in the past hundred years, particularly since 1970”

No such extreme outcome was ever likely, but the Gulf Stream certainly makes a big difference to Britain. A former UK chief scientist once calculated that it delivered 27,000 times the warmth that Britain’s power stations could supply and, as a consequence, the UK is on average 5°C warmer than it might be, given its latitude.

Strength of current

At a number of points in the last two decades, researchers have wondered about the strength of the Atlantic current, but since systematic oceanographic record-keeping began only relatively recently, they had no way of distinguishing between a natural oceanic cycle and real change.

So the Potsdam team used all available data, and “proxy temperatures” derived from ice-cores, tree-rings, coral, and ocean and lake sediments, to reconstruct the story of the Atlantic current − and, in particular, the phenomenon called the Atlantic meridional overturning circulation (AMOC) − for the last 1,000 years.

The changes happening now have no precedent since 900 AD, they say. And the increasingly rapid melting of the Greenland icecap – bringing an increased flow of water that is less saline and also less dense, and therefore less likely to sink − could disturb the circulation.

The consequences of all this could, they say, “contribute to further weakening of the AMOC” in the coming decades.

Atlantic Conveyor: a graph of the Atlantic Meridional Overturning Circulation (AMOC). Image: Stefan Rahmstorf/PIK

Atlantic Conveyor: a graph of the Atlantic Meridional Overturning Circulation (AMOC).
Image: Stefan Rahmstorf/PIK

This is not the first such alarm. The same weakening was identified last year, but at the time researchers could not be sure they were not looking at a natural fluctuation.

Now they are sure, and they suspect that the cooling of the north Atlantic that they now observe is even stronger than most computer simulations have so far predicted.

“Common climate models are underestimating the change we’re facing, either because the Atlantic overturning is too stable in the models or because they don’t properly account for the Greenland ice sheet melt, or both,” says one of the co-authors, Michael Mann, professor of meteorology at Pennsylvania State University in the US.

Climate predictions

“That is another example where observations suggest that climate model predictions are in some respects still overly-conservative when it comes to the pace at which certain aspects of climate change are proceeding.”

Another of the authors, Jason Box, professor of glaciology at the Geological Survey of Denmark and Greenland, adds that “the human-caused mass loss of the Greenland ice sheet appears to be slowing down the Atlantic overturning − and this effect might increase if temperatures are allowed to rise further”.

The stakes are high. If the Atlantic conveyor system continues to weaken, ocean ecosystems will change, fishing communities will be affected, and some coastal cities – such as New York and Boston in the US − could be hit by additional regional sea level rises.

The 2004 Hollywood version – promoted with a huge poster of New York’s Statue of Liberty all but covered by ice – is not likely to happen. But if the ocean circulation weakens too much, there could be a relatively rapid and difficult-to-reverse change in the world’s climate system.

The Intergovernmental Panel on Climate Change estimates that there is a one-in-10 chance of this “tipping point” happening within the 21st century.

But the evidence from the Potsdam team is now likely to prompt other climate scientists to go back to their calculations and re-evaluate the risk. – Climate News Network

Share This:

Growing concern over Iceland’s rising landmass

Growing concern over Iceland’s rising landmass

Satellite data confirms a global warming link between the melting of icecaps and an accelerating increase in the height of Icelandic hills.

LONDON, 10 February, 2015 − Iceland is certainly going up in the world − but that’s not necessarily good news. As the ice melts and glaciers retreat, the mantle below the crust of the Atlantic island has responded, and the ice-capped hills are rising by an average of 30mm a year.

And scientists says that their analysis of precision data from a network of satellite stations indicates that this uplift is accelerating by one or two millimetres a year.

Isostasy is not a new idea. Geologists have known for more than a century that the rigid plates of the Earth’s crust − the lithosphere − ride on a viscous, springy mantle called the asthenosphere.

As crustal mass is lost – the erosion of mountains, for instance, or the retreat of Ice Age glaciers – the asthenosphere responds, and the landmass rises. Similarly, when a volcanic cone is built by a series of rapid eruptions, the asthenosphere below starts to respond to the new burden by sinking.

Heaving and sinking

The principle is well established, and there is geological evidence of this slow heaving and sinking everywhere. But nobody had expected to be able to measure it as it happens.

Kathleen Compton,  of the University of Arizona’s Department of Geosciences, and colleagues report in Geophysical Research Letters that they used a network of 62 global positioning satellite stations to measure ground movements with exquisite accuracy.

They chose a set of stable icecaps away from the more active volcanic zones, to eliminate the heaving and sighing of the bedrock that is connected with eruption. Enough data was available from early installations of GPS stations to confirm that uplift from the end of the last ice age about 9,000 years ago was more or less at an end.

“What we’re observing is climatically-induced change in the Earth’s surface”

A glacier year that began in October and ended in September was chosen, so that measurements would not be confused by spring melting or early snowfall.

In the last 30 years, the world has warmed and the high latitudes of the northern hemisphere have warmed the fastest. The Arctic melting season has been advancing at the rate of about 17 days a decade.

The researchers’ measurements show that uplift began about 30 years ago, with some sites in Iceland now rising at 35mm a year. And this rate is increasing.

“Our research makes the connection between recent accelerated uplift and the accelerated melting of the Icelandic ice caps,” said Compton, a doctoral student.

“Iceland is the first place we can say accelerated uplift means accelerated ice loss,” said her co-author, associate professor Richard Bennett. “What we’re observing is climatically-induced change in the Earth’s surface.”

Volcanic activity

There is a tantalising possibility that they may also be observing a change in volcanic activity. Geological evidence suggests that, as the glaciers began to retreat 12,000 years ago, Iceland’s eruptions increased thirty-fold.

Other researchers have raised the possibility that warming-induced ice loss could increase the frequency of eruptions now.

But the Arizona team simply wanted to establish a connection between the rate of melting and the rate of uplift, and used mathematical models to confirm the coupling.

Dr Bennett says: “There’s no way to explain that accelerated uplift unless the glacier is disappearing at an accelerating rate.” – Climate News Network

Share This:

Greenland’s hidden meltwater lakes store up trouble

Greenland’s hidden meltwater lakes store up trouble

Scientists find evidence of vast “storage tanks” of water deep below the melting Greenland ice sheet that could have a major effect on sea level rise.

LONDON, 5 February, 2015 − One small mystery that surrounds Greenland’s melting ice is a little closer to being solved as scientists in the US confirm that surface meltwater can drain all the way down to fill concealed lakes under the ice.

This means that atmospheric warming can reach thousands of metres below the ice sheet − warming the glacial base and potentially increasing its rate of flow.

One group, led by geologist Michael Willis, of Cornell University, and another team led by glaciologist Ian Howat, of Ohio State University, report in two different journals on separate but related studies of Greenland’s plumbing system: what happens to meltwater.

The ice sheet of Greenland adds up to about four-fifths of the mass of the vast frozen island, and there is evidence that, as a consequence of global warming, the rate of melting has begun to accelerate.

Measurable difference

This has already begun to make a measureable difference to global sea levels, and were the entire island to shed its burden of ice – a process that would take a considerable time − then sea levels would rise by seven metres or more.

So what exactly happens to the water that forms on the surface and collects in lakes each summer, and how much of it gets into the sea, has become an important but perplexing problem. Surface lakes are now appearing much further inland, and at higher altitudes, than recorded in the past.

Dr Howat and his colleagues report in The Cryosphere that they measured a two kilometre-wide depression 70 metres deep in the icecap of southwest Greenland, which they then identified as “the first direct evidence for concentrated long-term storage and sudden release of meltwater at the bed”.

The slumped crater suggested a holding capacity of more than 30 million cubic metres of water, which had suddenly drained away.

“If we are going to do something to mitigate sea level rise, we need to do it earlier rather than later”

“The fact that our lake appears to have been stable for at least several decades, and then drained in a matter of weeks – or less – after a few very hot summers, may signal a fundamental change happening to the ice sheet,” Dr Howat said.

The Cornell team worked in northeast Greenland, and in 2011 found a collapsed basin 70 metres deep. Dr Willis and colleagues report in Nature journal that between 2011 and 2014 they watched as summer meltwater made its way down fissures in the depression and refilled a lake basin at the base of the icecap. When this in turn emptied, the researchers calculated that the flow from the subglacial lake was at a rate of 215 cubic metres per second.

“We’re seeing surface meltwater make its way to the base of the ice where it can get trapped and stored at the boundary between the bedrock beneath the ice sheet and the ice itself,” they say.

“As the lake beneath the ice fills with surface meltwater, the heat released by this trapped meltwater can soften surrounding ice, which may eventually cause an increase in ice flow.”

Glacial flow

The researchers do not yet know whether the draining water is increasing glacial flow, and nor can they be sure how many such depressions in the Greenland ice mask buried meltwater storage tanks.

But melting of glacial ice is likely to accelerate anyway, according to new research in the journal Climate Dynamics.

Earth scientist Patrick Applegate, of Penn State University, reports that computer models confirm that the more temperatures increase, the faster the ice will melt.

Were all Greenland’s ice to melt, sea levels would rise catastrophically. At least one billion people live on coasts and estuaries vulnerable to a mere one metre rise.

The Arctic is already the fastest warming place in the northern hemisphere, and the Penn State scientists wanted to see how present warming could play back into future warming. Engineers call this positive feedback.

“If we are going to do something to mitigate sea level rise, we need to do it earlier rather than later,” Dr Applegate said. “The longer we wait, the more rapidly the changes will take place and the more difficult it will be to change.” − Climate News Network

Share This:

Increased carbon spill from glaciers sets new puzzle

Increased carbon spill from glaciers sets new puzzle

Samples taken from five continents indicate that a big rise in organic carbon released by melting glaciers could have serious implications for ecosystems.

LONDON, 28 January, 2015 − Researchers in the US have calculated that, thanks to climate change, melting glaciers will have spilled an extra 15 million tonnes of organic carbon into the seas by 2050.

The consequences for the ecosystems that depend on glacial meltwater are uncertain, but this burden of biological soot and sediment has potential implications for the global carbon cycle as well.

The researchers estimate that the dissolved organic carbon released by melting glaciers will be an increase of half as much again on the current flow − the equivalent of about half the annual flow of dissolved carbon down the mighty Amazon River. And their calculations have identified another puzzle for climate scientists trying to understand the carbon cycle.

The planet’s glaciers and ice sheets cover about 11% of the planet’s surface and hold about 70% of the world’s fresh water. Spread thinly through this frozen water is a significant amount of biological carbon, with the Antarctic ice sheet alone hosting 6 billion tonnes of it.

Increased meltwater

It is safe for the time being, but mountain glaciers almost everywhere in the world are in retreat, and meltwater flow from the glaciers that drain the Greenland icecap is on the increase.

Eran Hood, professor of environmental science at the University of Alaska Southeast in Juneau, and colleagues report in Nature Geoscience that they developed a database of dissolved organic carbon found in 300 samples collected from glaciers on five continents.

Some of it was clearly preserved from living things on the ice itself, some of was scraped up as the glaciers moved over old soils, and some of it was soot from fossil fuel combustion or distant forest fires.

There was a wide spread of carbon concentrations in the samples, but it was enough to estimate a global average.

“We know we are losing glaciers, but what does that mean for marine life, fisheries, things downstream
that we care about?”

They also knew that Greenland and Antarctic icebergs delivered 4,250 billion tonnes of water to the oceans each year, and that the run-off from retreating mountain glaciers was somewhere between 369-905 billion tonnes.

So they could begin to make an estimate of the rate at which dissolved organic carbon is re-entering the planetary system, and perhaps augmenting the carbon cycle.

The carbon cycle underwrites all life: plants and microbes withdraw carbon from the atmosphere and some of it gets stored in the soilspreserved as peat, or locked away as rock, or frozen as ice to be returned to the planetary system in all sorts of ways,

New questions

Research like this is basic: it adds another detail or two to an understanding of how the planet works. It starts to answer existing questions − but it also raises new ones.

“This research makes it clear that glaciers represent a substantial reservoir of organic carbon,” said Dr Hood. “As a result, the loss of glacier mass worldwide, along with the corresponding release of carbon, will affect high latitude marine ecosystems, particularly those surrounding the major ice sheets that now receive fairly limited land-to-ocean fluxes of carbon.”

His co-author Robert Spencer, assistant professor of oceanography at Florida State University, said: “The thing people have to think about is what this means for the Earth. We know we are losing glaciers, but what does that mean for marine life, fisheries, things downstream that we care about?” – Climate News Network

Share This:

Science gains from clearer sight of Greenland’s ice melt

Science gains from clearer sight of Greenland's ice melt

Research into how Greenland’s ice melts should lead to more accurate predictions of sea level rise and global warming.

LONDON, 18 January, 2015 − Scientists in the US have used on-the-ice measurements and military-grade satellite imagery to take a much closer look at just how Greenland’s icesheet melts.

They already knew that huge icebergs fall from the glaciers into the ocean, and that surface lakes drain suddenly in the summer warmth. But now they know considerably more about what happens to the network of streams, rivers and ponds that collect in the summer sunshine, and then flow across the top of the icesheet into moulins, or sinkholes.

They report in the Proceedings of the National Academy of Sciences that they used the data collected to chart 523 streams in a catchment area of about 6,800 square kilometres during the freak thaw of 2012, when almost the whole of the Greenland icecap was covered in slush. They measured the run-off at between 1,550 and 1,700 cubic metres per second − twice the average flow of the Colorado River.

Thereafter, all this water drained into moulins, and began to filter towards the base of the icesheet. What happened to it then is not yet certain, but the guess is that a percentage was soaked up within the iceshelf, while a proportion reached the sea.

Only the start

The study placed 11 researchers on the ice for six days in July 2012, during a massive and unusual melt. Only on one other occasion in the last 700 years, in 1889, did Greenland’s ice melt on such a scale.

The scientists were moved around by helicopter and equipped with a specially-designed automaton boat, buoys fitted with GPS technology, and sophisticated satellite imagery.

“It was a real preview of just how quickly that ice sheet can melt and the meltwater can escape”, said lead author Laurence Smith, Professor of Earth, Planetary, and Space Sciences at University of California Los Angeles. “The question was whether the ice sheet acts like a sponge or like Swiss cheese.”

The provisional answer is: both. Some meltwater stays, and some certainly escapes altogether. But it will take more than just one visit to arrive at more precise calculations.

“Greenland is really the big player for sea level rise in the future, so improving climate models is extremely crucial”

The scientists also took measurements of Greenland’s Isortoq river − just one of about 100 large terrestrial rivers delivering Greenland meltwater to the oceans.

They found that the Isortoq carries water from the ice sheet to the ocean at between 650 and 1,300 cubic metres per second, which is less than models have projected.

Such direct measurements are important because they make predictions of melt rate and sea level rise more accurate − and more credible.

“If we can get better estimates, then we can have better projections for the extent and impact of global warming”, said another of the report’s authors, Marco Tedesco, founder and director of the City College of New York’s Cryospheric Processes Laboratory. “Greenland is really the big player for sea level rise in the future, so improving climate models is extremely crucial.” – Climate News Network

Share This:

Satellite provides sharper picture of shrinking ice sheet

Satellite provides sharper picture of shrinking ice sheet

The most detailed study yet of the Greenland ice sheet illustrates the complex process that is causing billions of tonnes to melt ever year.

LONDON, 27 December, 2014 − Greenland’s ice sheet shrank by an average of 243 billion tonnes a year between 2003 and 2009 – a rate of melting that is enough to raise the world’s sea levels by 0.68 mm per year.

In what is claimed as the first detailed study, geologist Beata Csatho, of the University of Buffalo in the US, and colleagues report in the Proceedings of the National Academy of Sciences that they used satellite and aerial data to reconstruct changes in the ice sheet at 100,000 places, and to confirm that the process of losing 277 cubic kilometres of ice a year is more complex than anyone had predicted.

The Greenland ice sheet is the second biggest body of ice on Earth − second only to Antarctica − and its role in the machinery of the northern hemisphere climate is profound.

Careful measurements

It has been closely studied for decades, but such are the conditions in the high Arctic that researchers have tended to make careful measurements of ice melt and glacier calving in fixed locations – in particular, at four glaciers − and then try to estimate what that might mean for the island as a whole.

“The great importance of our data is that, for the first time, we have a comprehensive picture of how all of Greenland’s glaciers have changed over the past decade,” Dr Csatho said.

The study looked at readings from NASA’s ice, cloud and land elevation satellite ICESat, and from aerial surveys of 242 glaciers wider than 1.5 km at their outlets, to get a more complete picture of melting, loss and – in some cases – thickening of the ice sheet as a whole.

“When the ice sheet is thinner, it is at a slightly lower elevation and at the mercy of warmer air temperatures”

Previous studies have focused on the four glaciers. One of them, Jakobshavn, has doubled its speed of flow since 2003, and closer studies have begun to reveal more about the dynamics of individual flows.

But the real strength of the study is that it establishes the pattern of ice melt in more detail, and suggests that climate models may not give a clear enough picture of the future of the ice cap. To put it crudely, Greenland could lose ice faster in the future than any of today’s predictions suggest.

Meanwhile, a team from the UK has been trying to work out what is happening on the surface of the ice sheet. Each summer, of course, some of the ice melts. Some of this gets to the sea, but some freezes again in the natural seasonal order of things.

But glaciology researcher Amber Leeson, of the University of Leeds, and colleagues report in Nature Climate Change that the “supraglacial” lakes that form each summer could also affect ice flow.

Their computer simulations suggest that these lakes will migrate further inland as the century wears on and the world continues to warm. Ice reflects heat, water absorbs it. So the process could trigger further melting. Some of this extra meltwater could slide or drain to the base of the glacier, lubricating its flow and accelerating the process yet again.

Thin pancake

“Our research shows that, by 2060, the area of Greenland covered by them will double,” Dr Leeson said. “When you pour pancake batter into a pan, if it rushes quickly to the edge of the pan, you end up with a thin pancake. It’s similar to what happens with ice sheets. The faster it flows, the thinner it will be.

“When the ice sheet is thinner, it is at a slightly lower elevation and at the mercy of warmer air temperatures than it would be if it were thicker, increasing the size of the melt zone around the edge of the ice sheet.”

In the last 40 years, the band in which such supraglacial lakes can form has crept 56 km inland. By 2060, the simulations now suggest, it could reach 110km inland, doubling the area of coverage and delivering yet more meltwater to fuel further warming.

Once again, the research suggests that current models underestimate the rate of ice loss. – Climate News Network

Share This:

Why Greenland is likely to melt more quickly

Why Greenland is likely to melt more quickly

Scientists who have examined the role of the bedrock on which the Greenland ice sheet rests think it shows the huge island is more vulnerable than realised to global warming.

LONDON, 1 October – Climate scientists have thought a little more deeply about the state of the Greenland ice sheet and their conclusions are ominous.

They think that the northern hemisphere’s largest assembly of ice and compacted snow is more vulnerable to climate change than anybody had previously thought.

Marion Bougamont of the Scott Polar Research Institute in Cambridge, UK, and colleagues report in Nature Communications that they factored in not just a mathematical model of the melting ice from Greenland, but also the role of the soft, yielding and absorbent mud and rock beneath.

The Greenland ice sheet is the planet’s second largest body of terrestrial ice. It covers 1.7 million square kilometres and if it were all to melt, the world’s sea levels would rise by more than seven metres.

Right now, about 200 gigatonnes of Greenland ice a year turn to water and run into the sea. This alone raises sea levels at the rate of 0.6 millimetres a year. In fact the increase in sea levels from all causes – glacier retreat worldwide, ice cap melting and ocean thermal expansion –  is now 3 mm a year.

Researchers have repeatedly found evidence of an acceleration of melting, in some cases by looking at what is happening within the ice or on the surface, or by taking a new look at satellite data.

Less stable

But the latest calculation goes even deeper: into the mud below the ice. According to the new model, and to evidence from surveys, melting will be complicated by the conditions deep under the ice.

The ice sheets are moving, naturally and at different speeds, causing the ice to shear or flow, and the assumption has always been that the ice is flowing over hard and impermeable rock. A closer look suggests a different process.

Lakes of summer meltwater tend to form on the ice sheet surface: if the ice below fractures, these lakes can drain in a matter of hours. The meltwater flows down within the ice, and into the sediment below it.

“The soft sediment gets weaker as it tries to soak up more water, making it less resistant, so that the ice above moves faster. The Greenland ice sheet is not nearly as stable as we think,” said Poul Christofferson, a co-author.

And Dr Bougamont said: “There are two sources of net ice loss: melting on the surface and increased flow of the ice itself, and there is a connection between these mechanisms that isn’t taken into account by standard ice sheet models.”

Rapid change

At present, the annual flow of ice meltwater is more or less stable. In warmer years, the ice sheet becomes more vulnerable because more meltwater gets to the muddy absorbent bedrock. Because there is a limit to how much the sediment below can hold, the ice sheet becomes more vulnerable during extreme events such as heat waves.

And, of course, if under such a scenario it is vulnerable, it continues to become more vulnerable as average temperatures rise and extreme events become more frequent, and more extreme. And a closer look at recent geological history shows just how fast change can happen.

In a separate study in Nature Communications, Katharine Grant of the Australian National University and colleagues report that they examined evidence of the melting process at the close of each of the last five ice ages.

They looked at data from wind-blown dust in sediment cores from the Red Sea, and matched these with records from Chinese stalagmites to confirm a picture of pronounced climate change at the end of each ice age, and calculated that sea levels rose at the rate of 5.5 metres per century.

These however were exceptional events, and there were more than 100 smaller sea level events in between the big five.

“Time periods with less than twice the modern global ice volume show almost no indications of sea level rise faster than about 2 metres per century,” said Dr Grant. “Those with close to the modern amount of ice on Earth show rates of up to one to 1.5 metres per century.” – Climate News Network

Share This:

Bluefin tuna follow prey to warming high Arctic

Bluefin tuna follow prey to warming high Arctic

A research ship’s surprise catch of bluefin tuna further north than ever recorded indicates that climate change is restructuring the food web as the waters of east Greenland get warmer.

LONDON, 8 September, 2014 − Biologists and fishermen aboard a scientific cruise in the Arctic while they investigated mackerel stocks caught more than they bargained for − three large bluefin tuna, each weighing about 100 kilograms.

The research ship was sailing through the Denmark Strait, which separates Greenland from Iceland. Bluefin tuna are very seldom found near Greenland, and there are no other scientific reports of them venturing that far north. The most recent report of a tuna anywhere near was a stranding in 1900, a long way south at Qaqortoq, on the south-western tip of Greenland.

Details of the find, during a cruise in August 2012 organised by the Center for Macroecology, Evolution and Climate at the University of Copenhagen, have now been published in the journal Global Change Biology.

Expanded range

The lead author, Professor Brian MacKenzie, said bluefin tuna usually search for prey in areas where surface temperatures are warmer than 11°C.

At the time of the catch, the Denmark Strait was unusually warm, and one of tuna’s preferred prey species, mackerel, had already expanded their range into the region.

Professor MacKenzie and his colleagues write: “Regional temperatures in August 2012 were historically high and contributed to a warming trend since 1985, when temperatures began to rise.

“The presence of bluefin tuna in this region is likely due to a combination of warm temperatures . . . and immigration of an important prey species to the region. We conclude that a cascade of climate change impacts is restructuring the food web in east Greenland waters.”

They say their data was too limited to estimate how many tuna came so far north, but because bluefins are a schooling species − with schools having from 10 to 100 individuals − and because the three tuna were caught in the same haul, it is likely there were many more present.

The report says: “Satellite imagery showing the spread of warm water from the south-east towards east Greenland suggests that recent warming and climate change may have opened a migration pathway from the European shelf towards Greenland for migratory species.”

It acknowledges that the fish may have swum to the Denmark Strait from the north-west Atlantic, and concludes: “Our results show that rising temperatures have been progressively leading a . . . trophic [high in the food chain] cascade into east Greenland waters via improved thermal conditions for migratory prey and predator species.”

New fishing quotas

Nobody knows why bluefin tuna disappeared from the waters near Denmark and in the Norwegian Sea during the 1960s, nor when they might return. But Iceland and Norway have been allocated new fishing quotas of 30 tonnes each for the species in 2014.

An adult bluefin tuna is typically 1.5m-2m long, but some have been as big as 4.5m and weighed 650 kg. The fish are highly prized for sushi, especially in Japan.

Further climate-related changes in distributions of commercial fish such as mackerel and herring will mean new fishery and ecosystem management plans are going to be needed, says the report’s co-author, Helle Siegstad, head of the Department for Fish and Shellfish at the Greenland Institute of Natural Resources.

The Denmark Strait tuna will be discussed at the annual science conference of the International Council for the Exploration of the Sea (ICES), which starts on 15 September in the Spanish coastal city of A Coruña. – Climate News Network

Share This:

Satellite mapping shows ice caps’ faster melt rate

Satellite mapping shows ice caps’ faster melt rate

Scientists have been able to measure more accurately than ever the thickness of the world’s major ice caps – revealing that melting is causing the loss of 500 cubic kms of ice annually.

LONDON, 1 September, 2014 − German researchers have established the height of the Greenland and Antarctic ice caps with greater precision than ever before. And the new maps they have produced show that the ice is melting at an unprecedented rate.

The maps, produced with a satellite-mounted instrument, have elevation accuracies to within a few metres. Since Greenland’s ice cap is more than 2,000 metres thick on average, and the Antarctic bedrock supports 61% of the planet’s fresh water, this means that scientists can make more accurate assessments of annual melting.

Dr Veit Helm and other glaciologists at the Alfred Wegener Institute’s Helmholtz Centre for Polar and Marine Research in Bremerhaven, Germany, report in the journal The Cryosphere that, between them, the two ice sheets are now losing ice at the unprecedented rate of 500 cubic kilometres a year.

Big picture

The measurements used to make the maps were taken by an instrument aboard the European Space Agency’s orbiting satellite CryoSat-2. The satellite gets closer to the poles − to 88° latitude − than any previous mission and traverses almost 16 million sq km of ice, adding an area of ice the size of Spain to the big picture of change and loss in the frozen world.

CryoSat-2’s radar altimeter transmitted 7.5 million measurements of Greenland and 61 million of Antarctica during 2012, enabling glaciologists to work with a set of consistent measurements from a single instrument.

Over a three-year period, the researchers collected 200 million measurements in Antarctica and more than 14 million in Greenland. They were able to study how the ice sheets changed by comparing the data with measurements made by NASA’s ICESat mission.

More complex

Greenland’s volume of ice is being reduced at the rate of 375 cubic km a year. In Antarctica, the picture is more complex as the West Antarctic ice sheet is losing ice rapidly, but is growing in volume in East Antarctica.

Overall, the southern continent − 98% of which is covered with ice and snow − is losing 125 cubic km a year. These are the highest rates observed since researchers started making satellite observations 20 years ago.

“Since 2009, the volume loss in Greenland has increased by a factor of about two, and the West Antarctic ice sheet by a factor of three,” said Angelika Humbert, one of the report’s authors. − Climate News Network

Share This:

Underworld threat to melting icecap

Underworld threat to melting icecap

Radar images of Greenland’s glaciers have revealed a spectacular underground landscape of “skyscraper” ice blocks created by a melt-and-freeze cycle that is accelerating the reduction of the icecap

LONDON, 16 June − Researchers in the US have identified a new reason for the acceleration in the melting of Greenland’s icecap − the ice underneath, as it melts and then refreezes, appears to speed up glacial flow.

The melt-and-freeze-again cycle is not itself new, as a similar process has been diagnosed under the ice cap of Antarctica. Nor is the process itself necessarily connected with global warming. Such things must always have happened.

But Robin Bell, a geophysicist at Columbia University’s Lamont Doherty Earth Observatory, reports with colleagues in Nature Geoscience that they used ice-penetrating radar to identify ragged blocks of ice as tall as skyscrapers and as wide as the island of Manhattan at the very bottom of the ice sheet. These structures cover about a tenth of the island and seem to form as melted water below the ice freezes again. They then warp the ice around and above them.

Easier to flow

“We see more of these features where the ice sheet starts to go fast,” Professor Bell said. “We think the refreezing process uplifts, distorts and warms the ice above, making it softer and easier to flow.”

Bell and her colleagues looked at the Petermann Glacier in Greenland’s north, which in 2010 pushed a huge chunk of ice into the sea. Observations suggest that the glacier is moving twice as fast as the surrounding ice, and the hypothesis is that the melt-and-freeze-again process is contributing to this acceleration.

Researchers have been troubled for a decade or more by the apparent increase in ice loss from Greenland. Were the whole island to melt, sea levels worldwide would rise by more than seven metres, so the concern is practical.

Recently, researchers have found that the bedrock beneath many glaciers is actually below sea level, making the glaciers vulnerable from ocean inflow. They have identified a process called “dynamic thinning”, triggered by warmer air temperatures, and they know anyway that natural geothermal heat flow mis likely to melt the base of the ice and lubricate any acceleration.

They have measured a fourfold increase since 1997 in summer flow speeds in the island’s Jakobshavn glacier. And they have indicated that the Greenland icecap each summer becomes more vulnerable to melting because the snows themselves are becoming darker, as more dust blows in from areas that are increasingly ice free.

Ice slide

So the discovery of a process that will make the ice slide to the sea more efficiently is not of itself more sinister. The meltwater could come from a number of sources. The friction created by a glacier as it moves must contribute. So could natural heat flow from the bedrock. Surface ice could melt in the summer sun and drain through crevasses to the base.

However, what the discovery helps to offer, literally and metaphorically, is a deeper understanding of the processes at work below the ice.

What is not clear is whether the melt-and-freeze cycle will influence the rate at which ice is lost in future. Nor does anyone yet know what triggers the cycle.

“The conditions under which such switches occur should be investigated, as they directly affect the ability of an ice sheet to slide over its bed,” advises Joseph A. McGregor, of the University of Texas at Austin, writing in the same issue of Nature Geoscience. − Climate News Network

Share This: