Investors chip in as renewables rise towards record level

Investors chip in as renewables rise towards record level

Climate-friendly boost for global energy mix as scientists say solar power alone could now meet the needs of California five times over.

LONDON, 12 April, 2015 − Carbon dioxide levels might be soaring, and governments might be slow to reduce fossil fuel emissions and contain climate change − but the smart money could nevertheless be going into renewable sources such as wind and solar power.

The United Nations Environment Programme (UNEP) says green energy investments rose by 17% in 2014 to reach a total of $270bn − the first annual increase in three years, and just 3% behind the all-time record set in 2011 of $279bn.

In 2014, renewable energies added 103 gigawatts to global capacity. This is roughly equal to the output of all 158 nuclear power reactors in the US.

Wind, solar, biomass, waste-to-power, geothermal, small hydro and marine power contributed an estimated 9.1% of world electricity generation in 2014. This also represents a notional saving in carbon dioxide emissions of 1.3 gigatonnes, which is about twice what pours from the exhausts of the world airlines.

Markets mature

“Once again in 2014, renewable made up nearly half the power capacity added worldwide,” said Achim Steiner, executive director of UNEP.

“These climate-friendly energy technologies are now an indispensable component of the global energy mix and their importance will only increase as markets mature, technology prices continue to fall and the need to rein in carbon emissions becomes ever more urgent.”

But, according to scientists backed by the Carnegie Institution, there is much more that could be done. A team led by Earth system scientists Rebecca Hernandez, now of the University of California Berkeley, reported in Nature Climate Change that solar energy alone could meet the demands of the state of California in the US up to five times over.

Solar power systems based on photovoltaics could generate up to 15,000 terawatts of energy a year. And mirror-driven concentrating systems could add another 6,000 terawatt hours.

California – now in the grip of a calamitous drought that has been tentatively linked to climate change triggered by human investment in fossil fuels – is the most populous state in the US. The researchers calculated that more than 27,000 square kilometres of land would be fit for photovoltaic solar construction, and more than 6,000 square kilometres for concentrating solar power.

“Their importance will only increase as markets mature, technology prices continue to fall
and the need to rein in carbon emissions becomes ever more urgent”

But there is a darker side to the story of renewable energy. On the other side of the Rocky Mountains, scientists have been working on the much more complex carbon budget of biofuels, which deliver energy in liquid form.

They count as renewable energy because, although they emit carbon dioxide when burned, they do not, overall, add to the levels of greenhouse gases in the atmosphere. That is because biofuel crops take carbon dioxide from the air to grow their tissues for conversion to fuel, and return the gas through engine exhausts.

But there have been persistent worries. One is that the conversion of food to fuel may not be the most efficient use of cropland.

Destroy ecosystems

The approach remains carbon neutral, as long as farmers exploit existing cropland. But the danger is that farmers might plough up existing grassland, destroy ecosystems, and release ancient stored soil carbon to the atmosphere, to make global warming worse.

Environmental scientist Tyler Lark and colleagues at the University of Wisconsin-Madison report in Environmental Research Letters that, between 2008 and 2012, US farmers ploughed seven million acres of new land for corn and soy for conversion to biofuels intended as renewable energy for motor transport.

In the course of doing so, they could have emitted as much carbon to the atmosphere as 34 coal-burning power stations in one year – or 28 million new cars on the road.

Nearly a quarter of the land converted came from long-standing prairies and ranges, much of it within the Central Plains, from North Dakota to Texas. And much of this was planted with corn intended for conversion to biofuels.

“It mimics the extreme land-use change that led to the Dust Bowl in the 1930s,” Lark says. “We could be, in a sense, ploughing up prairies with each mile we drive.” – Climate News Network

Share This:

Water crisis pushes Brazil towards solar power at last

Water crisis pushes Brazil towards solar power at last

Without water to feed its hydroelectric dams, drought-hit Brazil is turning to the solar energy source once dubbed a fantasy by the country’s president.

São Paulo, 5 April, 2015 − Brazil’s devastating drought could have the unexpected consequence of finally prompting one of the sunniest countries in the world to take solar power seriously.

The combination of an imminent energy crisis, as reservoir levels fall too low to generate power, and the appointment of a more open-minded Energy Minister promise a rapid change in the situation.

The drought, which has produced a crisis in the supply of water, has seen a dramatic drop in the levels of the reservoirs that supply dozens of hydroelectric dams in the southeast and centre west − Brazil´s industrial powerhouse and major population centre.

As Brazil now begins the seven-month dry period, when rain is traditionally sparse, the reservoirs in the drought-affected region could fall to as little as 10% of their capacity, which the new Mines and Energy Minister, Eduardo Braga, admits would be “catastrophic” for energy security.

Energy mix

It means that plans to introduce solar energy into the energy mix are at last being considered as Brazil seeks alternatives to hydroelectric dam, on which it relies for up to 80% of its energy.

The contribution of wind power, produced by onshore wind farms in the Northeast and South, has begun to grow.

But solar energy, dubbed “a fantasy” by President Dilma Rousseff just a few years ago, has been ignored. Only 400 homes in Brazil have photovoltaic (PV) panels installed on their roofs, because the cost is so prohibitive.

However, Braga has announced plans to turn dozens of hydroelectric dams in the southeast and centre west − which run the risk of becoming white elephants as the waters diminish − into solar energy farms.

Thousands of solar panels attached to buoys would be floated on the surface of the dwindling reservoirs to provide an alternative source of power.

Ministry officials have calculated they could add up to 15,000 megawatts (MW) of power, which is higher than the maximum capacity of two of Brazil´s latest Amazon megadams − Jirau, on the Madeira river, and the controversial Belo Monte, on the Xingu.

Reduce evaporation

The solar panels would have the added advantage of reducing water evaporation while at the same time being cooled by the water, boosting their conversion efficiency.

Pilot projects are about to begin on two dams owned by state companies − Sobradinho, on the São Francisco river in Bahia, and Balbina, on the Uatumã river in the Amazon.  If they are successful, the solar panels will be introduced into the dams in the southeast and centre west.

Brazil will not be the first country to experiment with floating solar power. Australia is trying it out with PV panels on the surface area of a wastewater treatment facility in Jamestown, South Australia. Their energy will power the plant.

Tax breaks for the production of photovoltaic panels have also been promised by Brazil’s Energy Minister, who also plans to introduce new rules to encourage the use of solar panels on buildings with large roof areas.

Two more auctions for solar power will be held this year. In the first such auction, held at the end of last year, 31 solar plants were chosen to provide a total capacity of 1,048 MW by 2017. The price was just under US$90 per MW − among the lowest in the world.

Solar energy potential, according to some sources, is equivalent to 20 times the total of all the present installed capacity of electrical energy

Factors that contributed to the low cost were the strong solar radiation factor in Brazil, and the fact that many solar parks would be installed in the same areas as wind farms, reducing the need to acquire land or build new transmission lines.

The 20-year contracts for energy supply involve investments of US$1.67 billion, and many foreign companies are already jostling to get a place in the Brazilian sun, in what promises to be a rapidly expanding market in a few years’ time,.

Spanish, Canadian, American, Italian and Chinese companies already have a foot in the door. And as soon as the government and its development bank, the BNDES, come up with the promised tax breaks and incentives, the solar industry could take off.

Vast potential

At the moment, the total solar energy generated in Brazil is a piffling 15MW, much of it from new football stadium roofs installed for the 2014 football World Cup. But its vast solar energy potential, according to some sources, is equivalent to 20 times the total of all the present installed capacity of electrical energy.

While it waits to see if the solar experiment on the dams works, the government is hoping that energy consumption can be reduced by means of publicity campaigns and price increases.

The downturn in the economy, with little or no growth expected this year, will also help. It has also increased the use of thermal electric plants, powered by natural gas, coal and diesel oil to provide 30% − up from 20% − to the national grid.

These are expensive to run, powered by fossil fuels, and contribute to carbon emissions, and they could soon be consigned to history as solar energy becomes a regular part of Brazil´s energy mix. – Climate News Network

Jan Rocha is a freelance journalist living in Brazil and is a former correspondent there for the BBC World Service and The Guardian.

Share This:

New ocean energy plan could worsen global warming

New ocean energy plan could worsen global warming

An apparently promising way of producing energy from the world’s oceans in fact risks causing catastrophic harm by warming the Earth far more than it can bear, US scientists say.

LONDON, 4 April, 2015 − One of renewable energy’s more outspoken enthusiasts has delivered bad news for the prospects of developing ocean thermal energy. His prediction is that although the technology could work for a while, after about 50 years it could actually exacerbate long-term global warning.

Of all the renewable energy technologies, ocean thermal energy conversion (OTEC) sounded like the perfect choice. This is a plan to exploit the difference between the warm surface and the cold deeps of the seas, and turn that difference into energy.

The agency that did the work would be a network of vertical pipes floating below the surface: it would not spoil the view from the coast, and it would deliver power day or night, whatever the weather. But there was more.

Enthusiasts pointed out that as a bonus, the pipes used in the energy conversion would bring a flow of nutrients from the cold, deep waters to the less-fertile but sunlit surface of the ocean, thus encouraging the growth of marine algae that would soak up more carbon from the atmosphere. And, as a bonus, the same process would accelerate the downward flow of carbon, where it could be sequestered on the sea bed.

Now one of renewable energy’s more vocal supporters has taken a closer look at the long-term consequences of the ocean pipes and come up with some discouraging news: an engineering programme intended to cool the planet would end up making it warmer. It would work for a while, he says, but after about half a century it would reduce the cloud cover and at the same time reduce the sea ice, to accelerate climate change once more.

Warming exacerbated

Ken Caldeira, senior scientist in the Department of Global Ecology at Stanford University’s Carnegie Institution, California, is one of the more energetic voices in climate research: he and his Carnegie colleagues have already warned that the world is feeling the heat from carbon dioxide released from car exhausts and factory chimneys and he has spoken up loudly for nuclear power, and indeed any “clean” energy sources.

He and Stanford colleagues Lester Kwiatkowski and Katharine Ricke report in Environmental Research Letters that when they began to simulate an ocean dotted with vertical pipes that exchanged deeper and shallower waters, they expected to confirm the value of such an approach. They could not.

“Our simulations indicate the likely sign and character of unintended atmospheric consequences of such ocean technologies,” they conclude, in formal science-speak. “Prolonged application of ocean pipe technologies, rather than avoiding global warming, could exacerbate long-term warming of the climate system.”

Research exercises such as this one cost nothing more than laboratory computing power and research time: their value once again is in reminding governments, campaigners and energy investors that the climate is an intricate piece of global machinery, and that there are no easy answers to the problems presented by renewable energy.

Radical change

They are also a reminder that geo-engineering of any kind to damp climate change could have unintended consequences. In this case – in an ideal, global simulation – it would change the thermal structure of the ocean altogether.

The Carnegie calculations work like this: cold air is denser than warm air. Water funnelled up the pipes on a very large scale from the depths would cool the air above the seas, and increase atmospheric pressure, which would reduce cloud formation over the seas. Since most of the planet is ocean, that means fewer clouds overall, which means more sunlight absorbed by the Earth rather than reflected back into space by the clouds.

And the same mixing of sea waters would bring sea ice into contact with warmer waters, which would mean less sea ice to reflect radiation, with the same result: accelerated global warming.

After 60 years, the simulated network of ocean pipes would cause an increase of global temperature by up to 1.2°C. After a few centuries, the same technology would take temperatures up by a catastrophic 8°5C.

“I cannot envisage any scenario in which a large scale global implementation of ocean pipes would be advisable,” said the report’s lead author, Dr Kwiatkowski. “In fact, our study shows it could exacerbate long-term warning and is therefore highly inadvisable at global scales.” – Climate News Network

Share This:

Climate is now main worry for conservation group

Climate is now main worry for conservation group

The devastating effects of a changing climate have become the biggest challenge faced by a leading protector of the UK countryside.

LONDON, 24 March, 2015 − The head of one of the UK’s best-known conservation groups says the greatest threat to its work is now climate change.

Dame Helen Ghosh, director-general of the National Trust, told BBC Radio that there is devastation of wild Britain and the creatures that live there. “Who would have thought that the house sparrow and hedgehog were going to become rare?” she said.

“For the future and we see this on our coastline, in our countryside, even in our houses climate change, we think, is the big threat to us.”

The Trust is the charity responsible for the care of countryside and historic houses across England, Wales and Northern Ireland (a separate body does the work in Scotland).

It is also one of Britain’s largest landowners, with 600,000 acres (250,000 hectares) and 700 miles (1,125 km) of coastline in its care, and more than 300 historic buildings − all held in trust for the future.

About 20 million people go to the Trust’s houses and gardens annually, but 200 million visit its upland, lowland and coastal sites.

Destruction of habitats

Dame Helen said: “The main challenge to our conservation purpose is the destruction of habitats, of wildlife − the fact that we see precious species 60% in decline.”

She suggested that, apart from climate, the other cause of that was intensive land management.

When it comes to recognising the risks of a warming world, Dame Helen is certainly well qualified. As a former leading civil servant, one of her last jobs before joining the Trust was to head the UK government’s Department for Environment, Food and Rural Affairs, which at that time had climate change as one of its responsibilities.

As part of its efforts to help address climate change, Dame Helen said the Trust would be getting 50% of the energy it uses in its houses and properties from renewable sources by 2020.

For example, she said, there would be “lots of hydro schemes across the country, lots of biomass boilers” as part of the renewable energy policy. The Trust aims to reduce its own energy consumption by about 20%.

It will also be working with its own tenant farmers, she said, “to try to make sure that land is farmed in environmentally-friendly ways that we get production, and also the bees and the butterflies”. Climate News Network

Share This:

Powerful wind blows through US energy sector

Powerful wind blows through US energy sector

Wind power in the US now generates enough electricity for more than 11 million homes, but it needs government support for further growth.

LONDON, 20 March, 2015 − The wind turbines are turning across America, and a major report by the US Department of Energy (DOE) says the wind energy sector now supplies 4.5% of the nation’s electricity.

Given the right energy policies and investment in infrastructure, that figure could increase to 10% by 2020 and to 35% by 2050, the DOE predicts.

That will not only benefit tens of thousands of workers who will be employed in one of the US’s fastest-growing industries. It’s also good news for the climate, and will help preserve increasingly precious water supplies.

“Deployment of wind technology for US electricity generation provides a domestic, sustainable and essentially zero carbon, zero pollution and zero water-use US electricity resource,” the DOE says.

Impressive growth

The rate of growth of wind power in the US has been impressive. In 2011 alone, nearly 3,500 turbines went up across the country. And the Natural Resources Defence Council says that a typical 250 megawatt wind farm − around 100 turbines − will create 1,073 jobs over the lifetime of the project.

The DOE says costs of wind power are dropping, while reliability and other issues are being sorted out. “Wind generation variability has a minimal and manageable impact on grid reliability and costs,” the report says.

Texas is the top wind power state, followed by Iowa, California and Oklahoma. At the end of 2013, the US had 61 gigawatts (GW) installed − up from 25 GW in 2009.

The aim is to increase those figures to 113 GW by 2020, to 224 GW by 2030, and to more than 400 GW by 2050.

The DOE says that if these plans are realised, the emission into the atmosphere of more than 12 gigatonnes of climate changing greenhouse gases (GHG) will be avoided.

“Pairing this homegrown resource with continued technology innovation has made the US the home of the most productive wind turbines in the world”

“Wind deployment can provide US jobs, US manufacturing and lease and tax revenues in local communities to strengthen and support a transition towards a low-carbon US economy,” the report says.

The trouble is that there is considerable resistance to wind power in parts of the political establishment. The DOE report – while not directly accusing Washington of standing in the way of progress on wind − does say that “new tools, priorities and emphases” need to be set in place in order to achieve wind energy targets.

These include an urgent need for a large-scale infrastructure programme in order to build wind power transmission lines.

The American Wind Energy Association, (AWEA), body that represents the industry, calculates that about 900 miles of transmission lines need to be put in place each year up to 2050 if the DOE is to achieve its wind power goals.

Tax policies to encourage wind development are also required. A special Wind Production Tax Credit (PTC), which effectively gave subsidies to the wind industry of about $13 billion a year, was brought in 1992.

Receive subsidies

But when the tax credit came up for renewal in 2012, it was not retained in the tax code, and finally lapsed at the end of 2013, although the oil, gas, fracking and coal industries – all major GHG emitters − have continued to receive subsidies.

Political analysts say there is little likelihood that the PTC will be renewed by a legislature controlled by the Republican party – which is generally opposed to giving financial incentives to the renewable energy sector.

The elimination of tax breaks initially slowed growth in the construction of wind energy facilities, but the industry remains upbeat and says investors are still putting money into projects.

“The US is blessed with an abundant supply of wind energy,” the AWEA says. “Pairing this homegrown resource with continued technology innovation has made the US the home of the most productive wind turbines in the world.” – Climate News Network

Share This:

Serious doubts over Europe’s GHG reduction target

Serious doubts over Europe’s GHG reduction target

Europe has made substantial progress in cutting greenhouse gas emissions, but its long-term reduction aims look unachievable, says a new report.

LONDON, 9 March, 2015 − The 28 countries of the European Union (EU) have set themselves a collective target of cutting emissions of climate-changing greenhouse gases (GHGs) by between 80% and 95% by 2050, but  a major report just released says there’s little hope of achieving that goal.

Every five years, the European Environment Agency (EEA) produces a comprehensive study, and the latest says projected declines in GHG emissions are not nearly enough to reach the long-term target of decarbonising most of Europe’s economy by mid-century.

The report says there has been considerable progress in recent years on reducing Europe’s GHG emissions to 19.2% below 1990 levels. while, at the same time, gross domestic product across the EU has increased by 45%. EU per capita emissions fell from 11.8 tonnes of CO2 equivalent in 1990 to 9 tonnes in 2012.

The trouble is that this progress is very unlikely to be maintained over the long term unless the entire EU economy is revamped and there are very substantial investments in renewables.

Hard part ahead

The cut in GHG emissions was largely achieved through economic restructuring in eastern Europe following the collapse of the old Soviet Union and associated states. Polluting energy and industrial plants were closed, and agricultural practices modernised.

The 2008 economic crisis also caused a dip in emissions, while EU policies aimed at achieving greater energy efficiency have also played an important role in reducing emissions.

That, in many ways, was the easy part. Now comes the big challenge: in order to achieve its long-term emissions reduction objective, Europe needs a wholesale reorganisation of its economy, says the EEA, and also needs to become less resource-hungry.

Fossil fuels still dominate energy production, accounting for 75% of energy supply in 2011 − the most recent year for which comprehensive statistics are available.

Progress achieved

“The EU will need to accelerate its implementation of new policies, while restructuring the ways that Europe meets its demand for energy, food, transport and housing,” the report says.

Short-term goals can be achieved, says the EEA, and the EU is on track to meet its target of producing 20% of its energy from renewable sources by 2020. Renewables accounted for 11% of EU energy production in 2012 – up from 4% in 1990.

It is a similar story across much of the European environment. Progress has been made over recent years in improving water systems, waste collection and recycling, and in rehabilitating some ecosystems.

“In many parts of Europe, the local environment is arguably in as good a state today as it has been since the start of industrialisation,” the report says. “Reduced pollution, nature protection and better waste management have all contributed.”

Worsening air

At the same time, what the report refers to as Europe’s natural capital is being seriously degraded by the activities of agriculture, fisheries, industries and  tourism. Urban sprawl is also having a negative impact.

In some regions, ecosystems are in a dire state, and the EU is not on track to meet its 2020 target on halting biodiversity loss.

Air quality is a particular concern.  The EEA estimates that more than 400,000 people in Europe died prematurely in 2011 due to breathing in toxic fumes. In some areas, air quality is getting worse, not better. And land is under severe pressure.

The report says that “loss of soil functions, land degradation and climate change remain major concerns, threatening the flows of environmental goods and services that underpin Europe’s economic output and well-being”. −  Climate News Network

Share This:

Prices fail to reflect fossil fuels’ real costs

Prices fail to reflect fossil fuels' real costs

The price consumers pay for the fossil fuels we use are appreciably lower than their true cost to society, US researchers say, and by the same logic renewables are seriously over-priced.

LONDON, 8 March, 2015 − Forget the price of petrol at the pumps. The true cost of any fossil fuel is much greater if social costs are factored in, according to new research.

A climate scientist in the US reports in Climatic Change journal that American motorists get a gallon of gasoline for at least $3.80 less than it really costs, and the price of coal-fired electricity would quadruple if consumers had to pay the real price. In contrast, solar and wind power are much cheaper than they might seem.

Professor Drew Shindell, of Duke University in Durham, North Carolina, has been calculating the economic entity called social cost − a measure of all the other burdens, charges, and impositions that arrive with a quantity of goods sold on the open market.

In particular, he has focused on all the health, climate and environmental problems that are linked to emissions from fossil fuels, biomass burning, and agriculture.

Harder to quantify

All these exact a price from society as a whole, but the motorist or the tractor driver or the industrialist doesn’t pay for the harder-to-quantify costs of air pollution, healthcare, falling crop yields, lost work and school days, or higher insurance premiums against flood and other weather extremes.

The US government has already proposed “social cost” accounting to price the emission of carbon dioxide to the atmosphere from fossil fuels at $37 per metric ton of carbon dioxide emitted. The purpose of such notional values is to help planners work out which steps are likely to be the most cost-effective.

Other scientists have already suggested such calculations are far too low. One recent study suggested the true figure should be six times higher. Another has pronounced the governmental basis for its calculations as flawed, and a third team has suggested that no matter what the cost of action, the price paid for doing nothing would be higher.

“We are making decisions based on misleading costs”

The new study is yet another attempt to provide a framework for economic calculations that reflect the new reality of climate change.

“We think we know what the prices of fossil fuels are, but their impacts on climate and human health are much larger than previously realised,” Prof Shindell warns. “We are making decisions based on misleading costs.”

Potent pollutants

His new economic models include damage from potent but short-lived climate pollutants such as methane and aerosols, as well as longer-lived greenhouse gases such as nitrous oxide. He also challenges the US Energy Information Administration’s estimated generation costs of 10 cents per kilowatt hour for coal, 13 cents for solar energy, eight cents for wind power and seven cents for natural gas.

“Not surprisingly, the US has seen a surge in the use of natural gas, the apparent cheapest option. However, when you add in environmental and health damages, costs rise to 17 cents per kilowatt hour for natural gas and a whopping 42 cents for coal,” he says.

“There is room for ongoing discussion about what the value of atmospheric emissions should be. But one thing there should be no debate over is that the current assigned price of zero is not the right value.” – Climate News Network

Share This:

Waste-to-energy revolution boosted by biobattery idea

Waste-to-energy revolution boosted by biobattery idea

New processes to turn waste products into renewable energy that can power cars, planes and turbines are rapidly being developed across the world.

LONDON, 4 March, 2014 − Competition to make bio-fuels out of waste products that would otherwise have to be dumped is creating a fast-growing, worldwide industry.

And a German research organisation now believes it has perfected a system called a “biobattery” for turning a vast range of waste into energy.

The drive for better technology has been spurred on by criticism that the first generation of bio-fuels used productive land that should be used for food crops, rather than to grow plants for ethanol and other fuels.

That inspired scientists and governments to find ways of using everything from human waste to algae to power planes, cars and to make electricity.

So many new companies have sprung up to exploit this new market and try to gain big backers for their projects that there is even a daily internet news site, BiofuelsDigest, just to keep up with developments.

Political decision

Germany has been the leader in Europe because it has made the political decision to phase out nuclear power and replace it with renewables.

Biofuel plants are a key part of this revolution because the gas they produce is used to make electricity to balance out the shortfall when solar farms and wind turbines are not producing enough power.

There are already 8,000 plants in operation in Germany, with an electrical output of 3.75 gigawatts in total − the equivalent roughly to three nuclear power plants. Some of these are the first generation that use food plants to make fuel, and so remain controversial.

However, the Fraunhofer Institute for Environmental Energy and Safety Technology (UMSICHT) in Germany has developed the  biobattery, which uses sewage sludge, green waste, production residues from the food industry, straw and animal excrement to create electricity, heat, purified gas, engine oil and high quality biochar (a form of charcoal).

“We can utilise a number of raw materials that would otherwise have to be disposed of,
often at great cost”

The scientists at UMSICHT, a research organisation that claims to be the leader in Europe for turning ideas into commercial ventures, believe that they can efficiently produce electricity and even marine and aviation fuel from the process.

They built a pilot plant, which they say is cheap to set up and can be scaled up without the need for large capital resources. The other advantage is it saves the cost of disposing of material that would otherwise be waste.

“We can utilise a number of raw materials that would otherwise have to be disposed of, often at great cost,” says Professor Andreas Hornung, director of UMSICHT at the Institute’s branch in Sulzbach-Rosenberg.

“The plant converts more than 75% of the energy efficiency into high quality energy sources in a robust, continuous process. The efficacy can be improved even more if mobile latent heat accumulators are used.”

To make all this work efficiently, the biobattery is a series of environmental technologies bolted together in one complex. They include biogas plants, thermal storage, carburettors and engines to produce electricity.

At the heart of the system is a process called “thermo-catalytic reforming”, which turns organic material into carbon. This is then processed to make oil, gas or coke.

Biobattery developed by the Fraunhofer Institute.

The biobattery developed by Fraunhofer

The process is continuous, feeding raw material in one end and mixing it up without oxygen with a continuous turning screw. The material is heated up to break it down into charcoal and gases. These vapours are then heated up again and cooled down to create bio-oil and water. The remaining gas is purified and collected.

The liquid, gaseous and solid products can be re-used in various ways. The oil can either be processed into marine and aviation fuel or used in a combined heat and power plant, as can the gas, to produce electricity and heat. The separated process water, which contains numerous short-chain biodegradable carbon compounds, can be fed back into the biogas plant to increase the methane yield. The biochar is ideal as a soil conditioner.

A number of pilot projects have been set up in Germany and elsewhere in Europe to test whether the system is economic in practice. The gas and other fuel produced are already being used commercially.

Tax imposed

The construction of bio-plants using waste that would otherwise have been sent to landfill is being driven across Europe by a landfill tax imposed by the European Union to encourage local authorities to re-use waste, recycle it, or use it as fuel.

It already cost £80 a tonne in the UK to dump waste, and it will rise to £82.60 next month. This has caused many landfill sites to shut.

The amount of waste going to landfill in the UK has dropped from 100 million tonnes in 1997 to the current figure of 30 million tonnes. Landfill companies are now separating elements of the waste so it can be recycled or processed into a variety of fuels.

This bio-revolution has been possible only because the landfill tax makes the alternative of disposing of the waste so costly that it is more economic to turn it into fuel.

The new German bio-battery and a host of other inventions pushing their way onto the market mean that the cost of electricity produced by the technology will continue to fall, as wind and solar energy have already done dramatically in the last 10 years. – Climate News Network

Share This:

Energy giant’s bleak outlook is 25% rise in CO2

Energy giant’s bleak outlook is 25% rise in CO2

The British-based oil and gas supermajor BP says it expects global emissions of carbon dioxide to rise by a quarter in the next 20 years.

LONDON, 24 February, 2015 − It may come as a shock, as governments ponder how to tackle climate change, to learn that the world is moving rapidly in the wrong direction.

But BP, one of the world’s six biggest oil and gas companies, says it thinks that, on present trends, emissions of CO2 will be 25% greater within two decades than they are today.

The prediction is published in BP’s Energy Outlook 2035, which it says is its best effort “to describe a ‘most likely’ trajectory of the global energy system”.

Global consumption

Some of the company’s other projections are hardly less startling. It thinks, for instance, that global energy consumption will be 37% greater by 2035 than it is today, with more than half the growth coming from India and China, and virtually all of it from countries that are not members of the OECD − the 34-member group of highly developed countries.

Global energy intensity − which measures the energy efficiency of a country’s economy − in 2035 is expected to be only half of what it was in 1995, and 36% lower than in 2013.

The lower the energy intensity is, the less it costs to convert energy into wealth. Even so, global energy use per person is projected to increase by 12%, as growing numbers of people demand higher living standards.

Renewables are expected to grow faster than any other energy source, by 6.3% annually. Nuclear power, at 1.8% a year, and hydro-electric power (1.7%) will grow faster than total energy use.

Among fossil fuels, natural gas is expected to grow fastest, with oil marginally ahead of coal. By 2035, China and India will together account for 60% of global demand for coal.

The most likely path for carbon emissions, despite current government policies and intentions, does not appear sustainable

In a guide to its Energy Outlook, BP (formerly British Petroleum) says it thinks fossil fuels will provide most of the world’s energy needs by 2035, meeting two-thirds of the expected increase in demand by then.

But it is renewables − “unconventional fossil fuels”, and gas, which is the least polluting fossil fuel − that will provide the largest share, while coal grows more slowly than any other fuel.

This, the Outlook says, will be the consequence of slowing industrialisation in emerging Asian economies and of more stringent global environmental policies.

To that it might have added the growing pressure for investors to steer clear of putting their money into fossil fuels, for fear that they could be at risk from a robust and rigorously-enforced global agreement on cutting greenhouse gas emissions.

Bob Dudley, BP’s chief executive, writes: “The most likely path for carbon emissions, despite current government policies and intentions, does not appear sustainable.

Scale of challenge

“The projections highlight the scale of the challenge facing policy-makers at this year’s UN-led discussions in Paris. No single change or policy is likely to be sufficient on its own.

“And identifying in advance which changes are likely to be most effective is fraught with difficulty. This underpins the importance of policy-makers taking steps that lead to a global price for carbon, which provides the right incentives for everyone to play their part.”

There are already signs that senior officials involved in the UN negotiations recognise the need to dampen expectations surrounding December’s talks in Paris.

The executive secretary of the UN Framework Convention on Climate Change, Christiana Figueres, said on 3 February that changing the world’s model of economic development would “not happen overnight and it will not happen at a single conference on climate change. . . It just does not occur like that. It is a process, because of the depth of the transformation.”

If BP’s Outlook proves correct, that process may be even longer and tougher than many expect. − Climate News Network

Share This:

New ideas give energy boost to wave power

New ideas give energy boost to wave power

Scientists and engineers in Scandinavia reveal new plans to harness the huge potential of waves to produce commercially viable renewable energy.

LONDON, 22 February, 2015 − All along the coasts of Europe where the Atlantic waves crash onto the shore there are experimental wave power stations producing electricity.

Now engineers in Norway and Sweden − two of the countries trying hardest to develop this technology − have announced “breakthroughs” in their methods, which the inventors believe will make wave power competitive.

At present, most wave power stations are small-scale. All of them work, but making them commercially viable to compete economically with other renewables and fossil fuels has so far eluded their inventors.

The latest Norwegian experiment has been installed in a redundant fishing vessel in the Stadthavet area of West Norway, an area designated for renewable energy testing.

Bicycle pump principle

Like all the best ideas, it is simple. “In principle, it works almost like a bicycle pump,” explains engineer and project manager Edgar Kvernevik, of Kvernevik Engineering AS.

The makers have installed four large chambers in the vessel’s bow. As the waves strike the vessel, the water level in the chambers rises. This creates an increase in air pressure, which in turn drives four turbines – one for each chamber.

The pitch of the vessel also contributes by generating additional air pressure in the chambers when the wave height is large. The design of the chambers is such that they work in response to different wave heights, which means that the energy is exploited very effectively.

“The plant thus produces electricity with the help of what is called a fluctuating water column,” says Kvernevik, who has spent much of his working life designing and building vessels.

Our aim is to . . . produce hydrogen at a competitive price – based on an infinite resource and involving no harmful emissions”

“All we have to do is to let the vessel swing at anchor in a part of the ocean with sufficient wave energy. Everything is designed to be remotely-controlled from onshore.

“This floating power plant has also been equipped with a special anchoring system, which means that it is always facing into the incoming waves. This ensures that the plant is in the optimal position at all times.”

A former fishing vessel converted to a wave power plant. Image: Sintef

A former fishing vessel that has been converted to a wave power plant.
Image: Sintef

The turbines on the deck of the vessel continue to work regardless of whether the chambers are inhaling or exhaling air as the wave runs past the vessel.

In the same area, which has a high average wind velocity, researchers have been studying the idea of floating wind turbines.

The project is now looking at combining wind turbines and wave power plants on the same vessel and using the electricity to create hydrogen gas – a way of storing the energy.

“We see this project as a three-stage rocket,” Kvernevik says. “The first stage is to test the model we have just built to make sure that electricity generation can be carried out as planned.

Production plant

“Next, a hydrogen production plant will be installed on board the vessel so that the electricity generated can be stored in the form of hydrogen gas.

“We have high hopes that hydrogen will be the car fuel of the future. Our aim is to work with others to produce hydrogen at a competitive price – based on an infinite resource and involving no harmful emissions.

“The plan is then to construct a plant with a nominal capacity of 1000kW (1MW). We will do this by installing five production modules similar to the current plant, either on a larger vessel or a custom-built barge. Finally, we will build a semi-submersible platform designed to carry a 4MW wave power plant with a 6MW wind turbine installed on top.”

The Norwegian Marine Technology Research Institute (MARINTEK) is one of the project partners that have contributed towards the development of the wave power plant.

Reliable source

Meanwhile, a Swedish company claims to have cracked the problem of scaling-up wave energy with a gearbox that generates five times as much power per tonne of device at one third of the cost.

One of the obvious problems with wave power is the height and timing of the waves, making it difficult to convert the power into a reliable energy source. But CorPower Ocean’s new wave energy system claims to produce three to four times more power than traditional systems.

The new system that helps to solve this problem is based in a buoy that absorbs energy from the waves − a scaled-up version of a heart surgeon’s research into heart pumping and control functions.

Patrik Möller, CorPower’s chief executive, says the wave energy converter – in contrast to competing systems − can manage the entire spectrum of waves.

He says: “We can ensure that it always works in time with the waves, which greatly enhances the buoy’s movement and uses it all the way between the wave crest and wave trough and back in an optimal way, no matter how long or high the waves are.”

The buoys are compact and lightweight and can be manufactured at a relatively low cost. A buoy 8 metres in diameter can produce 250-300 kilowatts in a typical Atlantic swell. A wave energy park with 100 buoys can generate 25 to 30 megawatts. – Climate News Network

Share This: